浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,100049
2. 中国科学院特殊环境功能材料与器件重点试验室, 新疆电子信息材料与器件重点试验室, 中国科学院 新疆理化技术研究所,新疆 乌鲁木齐,830011
收稿日期:2018-05-02,
修回日期:2018-10-17,
网络出版日期:2018-05-21,
纸质出版日期:2018-12-05
移动端阅览
王田珲, 李豫东, 文林等. CMOS图像传感器在质子辐照下热像素的产生和变化规律[J]. 发光学报, 2018,39(12): 1697-1704
WANG Tian-hui, LI Yu-dong, WEN Lin etc. Generation and Annealing of Hot Pixels of CMOS Image Sensor Induced by Proton[J]. Chinese Journal of Luminescence, 2018,39(12): 1697-1704
王田珲, 李豫东, 文林等. CMOS图像传感器在质子辐照下热像素的产生和变化规律[J]. 发光学报, 2018,39(12): 1697-1704 DOI: 10.3788/fgxb20183912.1697.
WANG Tian-hui, LI Yu-dong, WEN Lin etc. Generation and Annealing of Hot Pixels of CMOS Image Sensor Induced by Proton[J]. Chinese Journal of Luminescence, 2018,39(12): 1697-1704 DOI: 10.3788/fgxb20183912.1697.
应用于空间的图像传感器在辐射影响下产生的热像素严重影响空间光电探测性能,本文通过质子辐照试验研究了热像素的产生和变化规律。首先,使用3 MeV和10 MeV两种能量的质子对图像传感器进行辐照,分析不同能量、不同注量的质子辐照产生热像素的性质;其次,再对辐照后的器件进行退火试验,分析热像素的退火规律。对于相同注量辐照,3 MeV质子辐照下热像素产生率大约是10 MeV质子辐照下的2.3倍,但是10 MeV质子辐照产生热像素的灰度值高于3 MeV质子;辐照过程中热像素的数量都是随着注量的增加线性增加。退火过程中,热像素数量都不断减少,而3 MeV质子辐照产生的热像素相比于10 MeV质子,退火更为显著。结果表明,质子辐照下每个质子与器件之间的作用过程及产生缺陷的机制是相对独立的,不同质子的作用过程之间没有相关性。不同能量的质子辐照产生缺陷的类型不同,导致热像素具有不同特性。
Hot pixels of imagers induced by space radiation may result in performance degradation of space photoelectric detection and space imaging system. In this paper
generation and annealing mechanisms of hot pixels on CMOS image sensors(CIS) are studied by proton irradiation experiments. First
in order to investigate the properties of hot pixels induced by protons
several CIS samples were irradiated with two different energy levels (3 MeV and 10 MeV) of proton beam. In irradiation processes
characterizations of samples were carried out at different fluence points. Second
annealing experiments were carried out on the CIS samples after the irradiation. The annealing behaviors of hot pixels induced by protons of 3 MeV and 10 MeV were investigated. For the same fluence of proton irradiation
the number of hot pixels induced by 3 MeV proton beam is about 2.3 times as the situation of 10 MeV proton beam. However
comparing with the average gray value of hot pixels induced by proton beam
10 MeV is larger than 3 MeV. And the number of hot pixels produced by both energy levels increased linearly with the increasing of proton fluence. In the room temperature annealing process
the number of hot pixels decreased significantly
and the hot pixels induced by 10 MeV protons were more stable than those induced by 3 MeV protons. It was found that the interaction between each proton and each pixel is independent with each other. Under different energy levels
proton incidence produced different defects which led to different hot pixels.
SROUR J R, MEGARRITY J M. Radiation effects on microelectronics in space[J]. IEEE, 1998, 76(11):1443-1469.
HOPKINSON G R. Radiation effects in a CMOS active pixel sensor[J]. IEEE Trans. Nucl. Sci., 2000, 47(6):2480-2484.
COHEN M, DAVID J P. Radiation-induced dark current in CMOS active pixel sensors[J]. IEEE Trans. Nucl. Sci., 2000, 47(6):2485-2491.
BOGAERTS J, DIERICKX B, MEYNANTS G, et al.. Total dose and displacement damage effects in a radiation-hardened CMOS APS[J]. IEEE Trans. Nucl. Sci., 2003, 50(1):84-90.
汪波, 李豫东, 郭旗, 等. 0.5m工艺CMOS有源像素传感器的总剂量辐射效应[J]. 发光学报, 2015, 36(2):242-248. WANG B, LI Y D, GUO Q, et al.. Total dose effects in 0.5m CMOS active pixel image sensor[J]. Chin. J. Lumin., 2015, 36(2):242-248. (in Chinese)
徐守龙, 邹树梁, 黄有骏. 射线电离辐射对商用CMOS APS性能参数的影响[J]. 发光学报, 2017, 38(3):308-315. XU S L, ZOU S L, HUANG Y J. Effect of -ray ionizing radiation on CMOS active pixel sensor[J]. Chin. J. Lumin., 2017, 38(3):308-315. (in Chinese)
POLIDAN E J, WACZYNSKI A, MARSHALL P W, et al.. Hot pixel behavior in WFC3 CCD detectors irradiated under operational conditions[J]. SPIE, 2004, 5167:258-269.
MILL J D, O'NEIL R R, PRICE S, et al.. Midcourse space experiment:introduction to the spacecraft, instrucments, and scientific objectives[J]. J. Spacecraft. Rockets, 1994, 31(5):900-907.
SROUR J R, PALKO J W. Displacement damage effects in irradiated semiconductor devices[J]. IEEE Trans. Nucl. Sci., 2013, 47(6):1740-1766.
文林, 李豫东, 郭旗, 等. 射线及质子辐射导致CCD光谱响应退化的机制[J]. 发光学报, 2018, 39(2):244-250. WEN L, LI Y D, GUO Q, et al.. Mechanism of spectrum response degradation in CCD's exposed to -ray and proton[J]. Chin. J. Lumin., 2018, 39(2):244-250. (in Chinese)
张立国, 李豫东, 刘则洵, 等. TDI-CCD总剂量辐射效应及测试[J]. 光学精密工程, 2009, 17(2):2924-2930. ZHANG L G, LI Y D, LIU Z X, et al.. Influence of total dose effects on TDI-CCD and corresponding test methods[J]. Opt. Precision Eng., 2009, 17(12):2924-2930. (in Chinese)
GERMANICUS R, BARDE S, DUSSEAU L, et al.. Evaluation and prediction of the degradation of a COTS CCD induced by displacement damage[J]. IEEE Trans. Nucl. Sci., 2002, 49(6):2830-2835.
GILARD O, BOUTILLIER M, QUADRI G, et al.. New approach for the prediction of CCD dark current distribution in a space radiation environment[J]. IEEE Trans. Nucl. Sci., 2008, 55(6):3626-3632.
GILARD O, BOATELLA-POLO C, DOLADO-PEREZ J C, et al.. CoRoT satellite:analysis of the in-orbit CCD dark current degradation[J]. IEEE Trans. Nucl. Sci., 2010, 57(3):1644-1653.
ROBBINS M S. High-energy proton-induced dark signal in silicon charge coupled devices[J]. IEEE Trans. Nucl. Sci., 2000, 47(6):2473-2479.
BELLOIR J M, GOIFFON V, VIRMONTOIS C, et al.. Dark current spectroscopy in neutron, proton and ion irradiated CMOS image sensors:from point defects to clusters[J]. IEEE Trans. Nucl. Sci., 2017, 64(1):27-37.
玛丽娅, 李豫东, 郭旗, 等. CMOS有源像素图像传感器的电子辐照损伤效应研究[J]. 发光学报, 2017, 38(2):182-187. MA L Y, LI Y D, GUO Q, et al.. Electron beam radiation effects on CMOS active pixel sensor[J]. Chin. J. Lumin., 2017, 38(2):182-187. (in Chinese)
VIMONTOIS C, DUMEZ C, ESTRIBEAU M, et al.. Radiation effects in pinned photodiode CMOS image sensors:variation of epitaxial layer thickness[J]. IEEE Trans. Nucl. Sci., 2017, 64(1):38-44.
SROUR J R, LO D H. Universal damage factor for radiation-induced dark current in silicon devices[J]. IEEE Trans. Nucl. Sci., 2000, 47(6):2451-2459.
DALE C J, CHEN L, MCNULTY P J, et al.. A comparison of Monte Carlo and analytical treatments of displacement damage in Si microvolumes[J]. IEEE Trans. Nucl. Sci., 1994, 41(6):1974-1983.
SROUR J R, MARSHALL C J, MRSHALL P W. Review of displacement damage effects in silicon devices[J]. IEEE Trans. Nucl. Sci., 2003, 50(3):653-670.
0
浏览量
125
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构