浏览全部资源
扫码关注微信
1. 太原理工大学新材料界面科学与工程教育部重点实验室,山西 太原,030024
2. 太原理工大学 材料科学与工程学院,山西 太原,030024
3. 太原理工大学新材料工程技术研究中心,山西 太原,030024
收稿日期:2018-03-22,
修回日期:2018-05-15,
网络出版日期:2018-05-21,
纸质出版日期:2018-12-05
移动端阅览
候敏娜, 吴董宇, 卢国婧等. 高激子利用率的蓝光荧光材料及其激发态性质[J]. 发光学报, 2018,39(12): 1659-1668
HOU Min-na, WU Dong-yu, LU Guo-jing etc. Photophysical and Excited State Properties of Blue Fluorescent Material with High Exciton Utilizing Efficiency[J]. Chinese Journal of Luminescence, 2018,39(12): 1659-1668
候敏娜, 吴董宇, 卢国婧等. 高激子利用率的蓝光荧光材料及其激发态性质[J]. 发光学报, 2018,39(12): 1659-1668 DOI: 10.3788/fgxb20183912.1659.
HOU Min-na, WU Dong-yu, LU Guo-jing etc. Photophysical and Excited State Properties of Blue Fluorescent Material with High Exciton Utilizing Efficiency[J]. Chinese Journal of Luminescence, 2018,39(12): 1659-1668 DOI: 10.3788/fgxb20183912.1659.
制备了具有高激子利用率的A--D--A结构的蓝光荧光材料CzPAF-CP,并通过紫外-可见吸收光谱和荧光光谱以及理论计算等方法对化合物的光物理性质及激发态性质进行了研究。该化合物表现出显著的溶剂化效应,溶剂化红移高达116 nm。根据Lippert-Mataga关系以及瞬态光谱测试证明CzPAF-CP具有局域电荷转移杂化态,这一点从理论计算结果也可以得到证明。由于CzPAF-CP具有扭曲A--D--A结构,在水含量高达90%的水和四氢呋喃混合溶液中荧光没有被猝灭,具有聚集诱导发光性质。以CzPAF-CP为发光材料制备的OLED器件发射蓝光,其电致发光光谱最大发射峰在452 nm,半峰宽54 nm,色坐标为(0.150,0.117)。最大外量子效率达到6.3%,激子利用率达到71.6%,超出25%的上限,这是由于CzPAF-CP局域电荷转移杂化态导致高能级单线态和三线态激子发生反系间窜越导致的。
Blue emissive fluorescent material CzPAF-CP based on A--D--A structure with high exciton utilizing efficiency was prepared. The photophysical and excited state properties of CzPAF-CP were mainly studied by the UV-vis absorption spectra
photoluminescence spectra and theoretical calculation. CzPAF-CP exhibits remarkable solvatochromic effect with a large bathochromic shift of 116 nm in different polar solvents. Further investigation according to Lippert-Mataga equation and transient photoluminescence decay spectra prove that CzPAF-CP possesses a hybridized local and charge transfer state
which can be confirmed by theoretical calculation. Due to the twisting A--D--A configuration
fluorescence from CzPAF-CP in water/THF mixture with high water fraction does not quench
displaying aggregation induced emission. The OLED using CzPAF-CP as emissive material emits blue light with emissive peak at 452 nm
full width at half maximum of 54 nm and Commission International de L'Eclairage coordinates of (0.150
0.117). In addition
the device also achieved high efficiency with maximum external quantum efficiency of 6.3%. The resulting exiton utilizing efficiency was determined to be 71.6%
far beyond the theoretical limit for traditional fluorescent material(25%). Such high exiton utilizing efficiency is ascribed to special exited state of hybridized local and charge transfer state and reverse intersystem crossing from triplet exitons to singlet excitons at higher energy level.
ADACHI C, TOKITO S, TSUTSUI T, et al.. Organic electroluminescent device with a three-layer structure[J]. Jpn. J. Appl. Phys., 1988, 27(4):L713-L715.
BURROUGHES J H, BRADLEY D D C, BROWN A R, et al.. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347(6293):539-541.
BALDO M A, O'BRIEN D F, YOU Y, et al.. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151-154.
马东阁. OLED显示与照明从基础研究到未来的应用[J]. 液晶与显示, 2016, 31(3):229-241. MA D G. OLED display and lighting-from basic research to future applications[J]. Chin. J. Liq. Cryst. Disp., 2016, 31(3):229-241. (in Chinese)
祖洁, 陈平, 盛任, 等. 高效率的蓝色磷光有机电致发光器件[J]. 发光学报, 2017, 38(4):487-491. ZU J, CHEN P, SHENG R, et al.. Highly efficient blue organic light-emitting diodes[J]. Chin. J. Lumin., 2017, 38(4):487-491. (in Chinese)
逄辉, 张兴, 曹建华, 等. 一种正丙基环己烷修饰红光铱(Ⅲ)配合物的合成与发光性能研究[J]. 液晶与显示, 2016, 31(5):429-434. PANG H, ZHANG X, CAO J H, et al.. Synthesis and electrophosphorescence of a red Iridium(Ⅲ) complex modified by propylcylohexane[J]. Chin. J. Liq. Cryst. Disp., 2016, 31(5):429-434. (in Chinese)
CHEN W C, YUAN Y, XIONG Y, et al.. Aromatically C6-and C9-substituted phenanthro[9, 10-d] imidazole blue fluorophores:structure-property relationship and electroluminescent application[J]. ACS Appl. Mater. Interf., 2017, 9(31):26268-26278.
TANG X, BAI Q, SHAN T, et al.. Efficient nondoped blue fluorescent organic light-emitting diodes(OLEDs) with a high external quantum efficiency of 9.4%@1000 cdm-2 based on phenanthroimidazole-anthracene derivative[J]. Adv. Funct. Mater., 2018, DOI:10.1002/adfm.201705813.
LI B, TANG G, ZHOU L, et al.. Unexpected sole enol-form emission of 2-(2'-hydroxyphenyl) oxazoles for highly efficient deep-blue-emitting organic electroluminescent devices[J]. Adv. Funct. Mater., 2017, 27(9):1605245.
LUO Y, WANG Y, CHEN S, et al.. Facile access to twisted intramolecular charge-transfer fluorogens bearing highly pretwisted donor-acceptor systems together with readily fine-tuned charge-transfer characters[J]. Small, 2017, 13(20):1604113.
SASAKI S, DRUMMEN G P C, KONISHI G. Recent advances in twisted intramolecular charge transfer(TICT) fluorescence and related phenomena in materials chemistry[J]. J. Mater. Chem. C, 2016, 4(14):2731-2743.
LI W, LIU D, SHEN F, et al.. A twisting donor-acceptor molecule with an intercrossed excited state for highly efficient, deep-blue electroluminescence[J]. Adv. Funct. Mater., 2012, 22(13):2797-2803.
LI W, PAN Y, YAO L, et al.. A hybridized local and charge-transfer excited state for highly efficient fluorescent oleds:molecular design, spectral character, and full exciton utilization[J]. Adv. Opt. Mater., 2014, 2(9):892-901.
WANG Z, FENG Y, ZHANG S, et al.. Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole:remarkable substitution effects on the excited state properties and device performance[J]. Phys. Chem. Chem. Phys., 2014, 16(38):20772-20779.
TANG X, BAI Q, PENG Q, et al.. Efficient deep blue electroluminescence with an external quantum efficiency of 6.8% and CIE y< 0.08 based on a phenanthroimidazole-sulfone hybrid donor-acceptor molecule[J]. Chem. Mater., 2015, 27(20):7050-7057.
ZHANG S, YAO L, PENG Q, et al.. Achieving a significantly increased efficiency in nondoped pure blue fluorescent OLED:a quasi-equivalent hybridized excited state[J]. Adv. Funct. Mater., 2015, 25(11):1755-1762.
KIM J W, PARK E J, LYU E J, et al.. Synthesis and electro-optical properties of carbazole containing copolymers with different conjugated structures for polymer light-emitting devices[J]. Mol. Cryst. Liq. Cryst., 2009, 499(1):112-127.
ZHEN C G, CHEN Z K, LIU Q D, et al.. Fluorene-based oligomers for highly efficient and stable organic blue-light-emitting diodes[J]. Adv. Mater., 2009, 21(23):2425-2429.
REDDY S S, GUNASEKAR K, HEO J H, et al.. Highly efficient organic hole transporting materials for perovskite and organic solar cells with long-term stability[J]. Adv. Mater., 2016, 28(4):686-693.
GRABOWSKI Z R, ROTKIEWICZ K, RETTIG W. Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures[J]. Chem. Rev., 2003, 103(10):3899-4032.
WATANABE Y, SASABE H, YOKOYAMA D, et al.. Synthesis, properties, and OLED characteristics of 2,2'-bipyridine-based electron-transport materials:the synergistic effect of molecular shape anisotropy and a weak hydrogen-bonding network on molecular orientation[J]. J. Mater. Chem. C, 2016, 4(17):3699-3704.
KOMATSU R, SASABE H, NAKAO K, et al.. Unlocking the potential of pyrimidine conjugate emitters to realize high-performance organic light-emitting devices[J]. Adv. Opt. Mater., 2017, 5(2):1600675.
KRANTHIRAJA K, GUNASEKAR K, KIM H, et al.. High-performance long-term-stable dopant-free perovskite solar cells and additive-free organic solar cells by employing newly designed multirole -conjugated polymers[J]. Adv. Mater., 2017, 29(23):1700183.
LI X, CAI M, ZHOU Z, et al.. A comparative study of o, p-dimethoxyphenyl-based hole transport materials by altering -linker units for highly efficient and stable perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(21):10480-10485.
SUN J, YANG J, ZHANG C, et al.. A novel white-light-emitting conjugated polymer derived from polyfluorene with a hyperbranched structure[J]. New J. Chem., 2015, 39(7):5180-5188.
SUN J, WANG H, YANG T, et al.. Design, synthesis and properties of triple-color hyperbranched polymers derived from poly(9, 9-dioctylfluorene) with phosphorescent core tris(1-phenylisoquinoline) iridium(Ⅲ)[J]. Dyes Pigm., 2016,125:339-347.
ZHANG T, SUN J, LIAO X, et al.. Poly (9, 9-dioctylfluorene) based hyperbranched copolymers with three balanced emission colors for solution-processable hybrid white polymer light-emitting devices[J]. Dyes Pigm., 2017,139:611-618.
HU J Y, PU Y J, SATOH F, et al.. Bisanthracene-based donor-acceptor-type light-emitting dopants:highly efficient deep-blue emission in organic light-emitting devices[J]. Adv. Funct. Mater., 2014, 24(14):2064-2071.
OBOLDA A, PENG Q, HE C, et al.. Triplet-polaron-interaction-induced upconversion from triplet to singlet:a possible way to obtain highly efficient OLEDs[J]. Adv. Funct. Mater., 2016, 28(23):4740-4746.
0
浏览量
121
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构