浏览全部资源
扫码关注微信
1. 吉林大学 物理学院,吉林 长春,130021
2. 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春,130033
收稿日期:2018-08-12,
修回日期:2018-10-17,
纸质出版日期:2018-12-05
移动端阅览
付鑫鹏, 周强, 秦莉等. 单层WSe<sub>2</sub>、MoSe<sub>2</sub>激子发光的压力诱导K-&Lambda;交互转变[J]. 发光学报, 2018,39(12): 1647-1653
FU Xin-peng, ZHOU Qiang, QIN Li etc. Pressure-induced K-&Lambda; Crossover of Excitons Emissions in Monolayer WSe<sub>2</sub> and MoSe<sub>2</sub>[J]. Chinese Journal of Luminescence, 2018,39(12): 1647-1653
付鑫鹏, 周强, 秦莉等. 单层WSe<sub>2</sub>、MoSe<sub>2</sub>激子发光的压力诱导K-&Lambda;交互转变[J]. 发光学报, 2018,39(12): 1647-1653 DOI: 10.3788/fgxb20183912.1647.
FU Xin-peng, ZHOU Qiang, QIN Li etc. Pressure-induced K-&Lambda; Crossover of Excitons Emissions in Monolayer WSe<sub>2</sub> and MoSe<sub>2</sub>[J]. Chinese Journal of Luminescence, 2018,39(12): 1647-1653 DOI: 10.3788/fgxb20183912.1647.
采用机械剥离法在金刚石对顶砧中制备了单层WSe
2
和MoSe
2
样品,利用高压微区荧光光谱测量技术,在氩传压介质环境下对其激子发光行为进行了高压调控研究。其中单层WSe
2
的中性和负电激子演化趋势在2.43 GPa处出现拐点,单层MoSe
2
中性激子发光在3.7 GPa处发生了劈裂。结合第一性原理计算分析,确认该不连续现象的产生机制为压力诱导的导带底K-交互转变。该结果可以扩大至整个二维层状材料体系,为发展激子器件垫定基础。
Monolayer MoSe
2
and WSe
2
samples were prepared by mechanical exfoliation in diamond anvil cell(DAC). The high-pressure micro-area fluorescence spectroscopy technique was used to study excitons emission behavior under pressure in argon pressure-transmitting medium(PTM). The neutral and negative exciton evolutionary trends of monolayer WSe
2
showed an inflection point at 2.43 GPa
and the neutral exciton emission of monolayer MoSe
2
appeared a new split peak at 3.7 GPa. Combined with the first-principles calculation and analysis
we confirmed that the mechanism of these discontinuities is the pressure-induced conduction band bottom K- crossover. This result can be extended to the entire two-dimensional layered material family
and laying foundation for the development of exciton devices.
CAO T, WANG G, HAN W, et al.. Valley-selective circular dichroism of monolayer molybdenum disulphide[J]. Nat. Commun., 2012, 3:887.
ALLAIN A, KIS A. Electron and hole mobilities in single-layer WSe2[J]. ACS Nano, 2014, 8(7):7180-7185.
MAK K F, HE K, SHAN J, et al.. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat. Nanotechnol., 2012, 7(8):494-498.
GANATRA R, ZHANG Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5):4074-4099.
TONGAY S, SUH J, ATACA C, et al.. Defects activated photoluminescence in two-dimensional semiconductors:interplay between bound, charged, and free excitons[J]. Sci. Rep., 2013, 3:2657.
LU X, UTAMA M I B, LIN J H, et al.. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates[J]. Nano Lett., 2014, 14:2419-2425.
XIA F N, WANG H, XIAO D, et al.. Two-dimensional material nanophotonics[J]. Nat. Photonics, 2014, 8:899-907.
FAN X, CHANG C H, ZHENG W T, et al.. The electronic properties of single-layer and multilayer MoS2 under high pressure[J]. J. Phys. Chem. C, 2015, 119:10189-10196.
MAK K F, HE K L, LEE C, et al.. Tightly bound trions in monolayer MoS2[J]. Nat. Mater., 2013, 12:207-211.
ROSS J S, WU S F, YU H Y, et al.. Electrical control of neutral and charged excitons in a monolayer semiconductor[J]. Nat. Commun., 2013, 4:1474.
SINGH A, MOODY G, WU S, et al.. Coherent electronic coupling in atomically thin MoSe2[J]. Phys. Rev. Lett., 2014, 112:216804.
CHERNIKOV A, BERKELBACH T C, HILL H M, et al.. Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2[J]. Phys. Rev. Lett., 2014, 113(7):076802.
JONES A M, YU H, GHIMIRE N J, et al.. Optical generation of excitonic valley coherence in monolayer WSe2[J]. Nat. Nanotechnol., 2013, 8(9):634-638.
MAI C, BARRETTE A, YU Y F, et al.. Many-body effects in valleytronics:direct measurement of valley lifetimes in single-layer MoS2[J]. Nano Lett., 2014, 14(1):202-206.
SIE E J, FRENZEL A J, LEE Y H, et al.. Intervalley biexcitons and many-body effects in monolayer MoS2[J]. Phys. Rev. B, 2015, 92:125417.
RIVERA P, SCHAIBLEY J R, JONES A M, et al.. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures[J]. Nat. Commun., 2015, 6:6242.
SIM S, PARK J, SONG J G, et al.. Exciton dynamics in atomically thin MoS2:interexcitonic interaction and broadening kinetics[J]. Phys. Rev. B, 2013, 88(7):075434.
CASTELLANOS-GOMEZ A, BUSCEMA M, MOLENAAR R, et al.. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping[J]. 2D Mater., 2014, 1(1):011002.
CASTELLANOS-GOMEZ A, VICARELLI L, PRADA E, et al.. Isolation and characterization of few-layer black phosphorus[J]. 2D Mater., 2014, 1(2):025001.
YE Y X, DOU X M, DING K, et al.. Pressure-induced K- crossing in monolayer WSe2[J]. Nanoscale, 2016, 8:10843-10848.
PERDEW J P, BURKE K, ERNZERHOF M. generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18):3865-3868.
0
浏览量
42
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构