浏览全部资源
扫码关注微信
河北科技师范学院 凝聚态物理研究所,河北 秦皇岛,066004
收稿日期:2018-03-12,
修回日期:2018-05-13,
网络出版日期:2018-06-11,
纸质出版日期:2018-11-05
移动端阅览
赵玉伟, 王国胜, 韩超等. 电场中非对称高斯势量子点内极化子量子跃迁的厚度效应[J]. 发光学报, 2018,39(11): 1513-1518
ZHAO Yu-wei, WANG Guo-sheng, HAN Chao etc. Thickness Effect on Quantum Transition of The Polaron in An Asymmetric Gaussian Potential Quantum Dot Within An Electric Field[J]. Chinese Journal of Luminescence, 2018,39(11): 1513-1518
赵玉伟, 王国胜, 韩超等. 电场中非对称高斯势量子点内极化子量子跃迁的厚度效应[J]. 发光学报, 2018,39(11): 1513-1518 DOI: 10.3788/fgxb20183911.1513.
ZHAO Yu-wei, WANG Guo-sheng, HAN Chao etc. Thickness Effect on Quantum Transition of The Polaron in An Asymmetric Gaussian Potential Quantum Dot Within An Electric Field[J]. Chinese Journal of Luminescence, 2018,39(11): 1513-1518 DOI: 10.3788/fgxb20183911.1513.
计及量子点厚度下,分别选取抛物势和高斯势描写盘型量子点中电子的横向束缚势和纵向束缚势,采用Pekar类型变分法推导出量子点中极化子的基态和第一激发态能量本征值和本征函数,以此为基础,构造了一个二能级结构,并基于二能级体系理论,讨论了极化子在外电场作用下的量子跃迁问题。结果表明,高斯束缚势比抛物束缚势更能精准反映量子点中真实的束缚势;量子点的厚度对极化子的跃迁几率
Q
所带来的影响有趣且有实际意义,不可忽略;电声耦合强度
、电场强度
F
、非对称高斯势的势垒高度
V
0
和束缚范围
L
等对极化子的基态与第一激发态能量以及量子跃迁的影响显著;本文的结果有助于探讨利用这些物理量来调控量子点的输运特性和光学性质的途径和方法。
Considering the thickness of the quantum dot
the eigenvalues and eigenfunctions of the polaron ground state and first exited state in a quantum dot were derived by using the Pekar variational method with the harmonic and Gauss potentials as the transverse and longitudinal confinement potentials
respectively. Based on above two states
a two-level system was constructed. Then
the polaron quantum transition affected by an electric field was discussed in terms of the two-level system theory. The results indicate that the Gauss potential reflects the real confining potential more accurately than the parabolic potential; the influence of the thickness of the quantum dot on the transition probability
Q
of the polaron is interesting and significant
and must not be ignore; the ground and the first excited states' energies and the corresponding transition probability of the polaron are influenced significantly by some physical quantities
such as the strength
of the electron-phonon coupling
strength
F
of the electric field
barrier
V
0
and confinement range
L
of the asymmetric Gauss potential
suggesting the transport and optical properties of the quantum dot can be manipulated further though those physical quantities.
YANG S, DOU X M, YU Y,
et al.. Single-photon emission from gaas quantum dots embedded in nanowires[J]. Chin. Phys. Lett., 2015, 32(7):077804-1-4.
XUE Y Z, CHEN Z S, NI H Q, et al.. Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm[J]. Chin. Phys. B, 2017, 26(8):084202-084205.
LI B X, ZHENG J, CHI F. Rectification effect of the heat generation by electric current in a quantum dot molecular[J]. Chin. Phys. Lett., 2014, 31(5):057302-1-5.
FENG Z Y, YAN Z W. Polaron effect on the optical rectification in spherical quantum dots with electric field[J]. Chin. Phys. B, 2016, 25(10):107804-1-6.
LI W P, XIAO J L, YIN J W,et al.. The energy levels of a two-electron two-dimensional parabolic quantum dot[J]. Chin. Phys. B, 2010, 19(4):047102-1-5.
CHEN Y J, XIAO J L.The temperature effects on the parabolic quantum dot qubit in the electric field[J]. J. Low Temp. Phys., 2013, 170:60-67.
BAI X F, XIN W, YIN H W,et al.. The properties of the ground state of the frhlich bipolaron with rashba spin-orbit coupling in a quantum dot[J]. Int. J. Theor. Phys., 2017, 56:1673-1684.
SUN Y, DING Z H, XIAO J L. Effects of temperature and magnetic field on the coherence time of a RbCl parabolic quantum dot qubit[J]. J. Electron. Mater., 2017, 46(1):439-442.
谷娟, 梁九卿. 施主中心量子点能谱分析[J]. 物理学报, 2005, 54(11):5335-5338. GU J, LIANG J J. Energy spectrum analysis of donor-center quantum dot[J]. Acta Phys. Sinica, 2005, 54(11):5335-5338. (in Chinese)
FOTUE A J, KENFACK S C, TIOTSOP M, et al.. Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential[J]. Eur. Phys. J. Plus, 2016, 131:75-81.
JACAK L, HAWRYLAK P, WOJS A. Quantum Dots[M]. Berlin:Springer, 1998.
ADAMOWSKI J, SOBKOWICZ M, SZAFRAN B,et al.. Electron pair in a Gaussian confining potential[J]. Phys. Rev. B, 2000, 62:4234-4237.
XIE W F. Two interacting electrons in a Gaussian confining potential quantum dot[J]. Solid State Commun., 2003, 127(5):401-405.
HAI G Q, PEETERS F M, DEVREESE J T. Polaron-cyclotron-resonance spectrum resulting from interface-and slab-phonon modes in a GaAs/AlAs quantum well[J]. Phys. Rev. B, 1993, 47:10358-10362.
LIANG S D, CHEN C Y, JIANG S C, et al.. Size effect on exciton-phonon scattering in quantum wires[J]. Phys. Rev. B, 1996, 53:15459-15463.
XIAO J L.The effect of electric field on RbCl asymmetric Gaussian potential quantum well qubit[J]. Int. J. Theor. Phys., 2016, 55:147-154.
KHORDAD R, GOUDARZI S, BAHRAMIYAN H. Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well[J]. Indian J. Phys., 2016, 90(6):659-664.
LEE T D, LOW F M, PINES D. The motion of slow electrons in a crystal[J]. Phys. Rev., 1953, 90:297-302.
YILDIRIM T, ERCELEBI A. The grounds-state description of the optical polaron versus the effective dimensionality in quantum-well-type systems[J]. J. Phys.:Condens. Matter, 1991, 3(10):1271-1278.
EERDUNCHAOLU, XIAO J L. Effects of lattice vibration on the properties of the strong-coupling polaron in a quantum well[J]. J. Phys. Soc. Jpn., 2007, 76(4):044702-1-7.
0
浏览量
194
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构