浏览全部资源
扫码关注微信
1. 江西师范大学 化学化工学院,江西 南昌,330022
2. 湘潭大学 化学学院,湖南 湘潭,411105
收稿日期:2014-06-05,
修回日期:2014-07-01,
纸质出版日期:2014-10-03
移动端阅览
梁爱辉, 邓先平, 朱卫国. 含载流子基团的红色磷光铱配合物的电致发光特性[J]. 发光学报, 2014,35(10): 1246-1251
LIANG Ai-hui, DENG Xian-ping, ZHU Wei-guo. Electroluminescent Performances of Red Phosphorescent Iridium Complexes with Carrier Groups[J]. Chinese Journal of Luminescence, 2014,35(10): 1246-1251
梁爱辉, 邓先平, 朱卫国. 含载流子基团的红色磷光铱配合物的电致发光特性[J]. 发光学报, 2014,35(10): 1246-1251 DOI: 10.3788/fgxb20143510.1246.
LIANG Ai-hui, DENG Xian-ping, ZHU Wei-guo. Electroluminescent Performances of Red Phosphorescent Iridium Complexes with Carrier Groups[J]. Chinese Journal of Luminescence, 2014,35(10): 1246-1251 DOI: 10.3788/fgxb20143510.1246.
将含载流子基团的铱配合物Ir-1或Ir-2掺杂到聚芴(PFO)和2-(4-二苯基)-5-(4-叔丁苯基)-1,3,4-噁二唑(PBD)中作为发光层,采用旋涂法制备电致发光器件。通过改变发光层中铱配合物的掺杂浓度,研究了不同掺杂比例对器件性能的影响。结果表明,当铱配合物的掺杂质量分数为2%时,器件的电致发光性能最好。和含苯基的Ir-1比较发现,以含空穴传输基团三苯胺的Ir-2为客体材料的器件性能更好,能够更有效地避免T-T猝灭,器件的最大流明效率为2.78 cdA
-1
,最大亮度为5 718 cdm
-2
。
Polymer light-emitting diodes (PLEDs) with device structure of indium tin oxide (ITO)/poly(3
4-ethylenedioxylenethiophene):poly(styrenesulphonic acid) (PEDOT:PSS)/emissive layer/tris(8-hydroxyquinolinato)aluminum (Ⅲ) (Alq
3
)/lithium fluoride (LiF)/Al were fabricated by solution procedures to obtain highly efficient saturated red electrophosphorescence. In the emissive layer
the blends of poly(9
9-dioctylfluorene) (PFO) and 2-tert-butylphenyl-5-biphenyl-1
3
4-oxadiazole (PBD) were used as host materials (the mass fraction of PBD was 30%)
and the iridium complexes Ir-1 and Ir-2 were used as the guest materials. The electroluminescent properties were investigated by changing the doping mass fraction of the iridium complexes in the emissive layer from 1% to 8%. The luminous efficiencies of PLEDs with Ir-1 and Ir-2 enhance when the dopant mass fraction increases from 1% to 2%. A further increase of the dopant mass fraction from 2% to 8% results in a decrease of the maximum luminous efficiencies
as a result of the concentration quenching and triplet-triplet (T-T) annihilation. The highest luminous efficiency of 2.72 cdA
-1
using Ir-1 as dopant is obtained at the doping mass fraction of 2%
and the luminous efficiency reduces to 2.17 cdA
-1
at a higher current density of 100 mAcm
-2
. Contrastively
the device based on Ir-2 exhibits highest luminous efficiency of 2.78 cdA
-1
at doping mass fraction of 2%. In addition
the luminous efficiency still stays at 2.30 cdA
-1
as the current density rises to 100 mA cm
-2
. Compared to Ir-1 which containing phenyl group in its ancillary ligand
Ir-2 with triphenylamine-modified ancillary ligand displays better electroluminescent performances
probably due to the triphenylamine group has bigger steric hindrance which can efficiently suppress concentration quenching and T-T annihilation. This indicates that it is an effective method to develop highly efficient electrophosphorescent devices by introducing big steric hindrance and good charge transport group into the ancillary ligand of the iridium complex.
Tang C W, VanSlyke S A, Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51:913-915.
Burroughes J H, Bradley D D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers[J]. Nature, 1990, 347:539-541.
Zhang K, Guan X, Huang F, et al. Performance study of water/alcohol soluble polymer interface materials in polymer optoelectronic devices[J]. Acta Chim. Sinica (化学学报), 2012, 70:2489-2495 (in Chinese).
Ma Y G, Zhang H Y, Shen J C, et al. Electroluminescence from triplet metal-ligand charge-transfer excited state of transition metal complexes[J]. Synth. Met., 1998, 94(3):245-248.
Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395:151-154.
Gong S, Yang C, Qin J. Efficient phosphorescent polymer light-emitting diodes by suppressing triplet energy back transfer[J]. Chem. Soc. Rev., 2012, 41:4797-4807.
Baldo M A, O'Brien D F, Thompson M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film[J]. Phys. Rev. B, 1999, 60(20):14422-14428.
Kohler A, Wilson J S, Friend R H. Fluorescence and phosphorescence in organic materials[J]. Adv. Mater., 2002, 14(10):701-707.
Lamansky S, Djarovich P, Murphy D, et al. Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001, 123(18):4304-4312.
Duan J P, Sun P P, Cheng C H. New iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes[J]. Adv. Mater., 2003, 15(3):224-228.
Liang A H, Zhang K, Zhang J, et al. Supramolecular phosphorescent polymer iridium complexes for high-efficiency organic light-emitting diodes[J]. Chem. Mater., 2013, 25(6):1013-1019.
Chien C H, Liao S F, Wu C H, et al. Electrophosphorescent polyfluorenes containing osmium complexes in the conjugated backbone[J]. Adv. Funct. Mater., 2008, 18(9):1430-1439.
Liu J, Yu L, Zhong C, et al. Highly efficient green-emitting electrophosphorescent hyperbranched polymers using a bipolar carbazole-3, 6-diyl-co-2, 8-octyldibenzothiophene-S, S-dioxide-3, 7-diyl unit as the branch[J]. Rsc Adv., 2012, 2(2):689-696.
Shao S, Ding J, Wang L. Highly efficient blue electrophosphorescent polymers with fluorinated poly(arylene ether phosphine oxide) as backbone[J]. J. Am. Chem. Soc., 2012, 134(37):15189-15192.
Xia Z Y, Xiao X, Su J H, et al. Low driving voltage and efficient orange-red phosphorescent organic light-emitting devices based on a benzotriazole iridium complex[J]. Synth. Met., 2009, 159:1782-1785.
Fan C, Li Y H, Yang C L, et al. Phosphoryl/sulfonyl-substituted iridium complexes as blue phosphorescent emitters for single-layer blue and white organic light-emitting diodes by solution process[J]. Chem. Mater., 2012, 24(23):4581-4587.
Tsuboyama A, Iwawaki H, Furugori M, et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode[J]. J. Am. Chem. Soc., 2003, 125(42):12971-12979.
Su Y J, Huang H L, Li C L, et al. Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: Remarkable external quantum efficiency over a wide range of current[J]. Adv. Mater., 2003, 15(11):884-888.
Hu Z Y, Luo C P, Wang L, et al. Highly efficient saturated red electrophosphorescence from isoquinoline-based iridium complex containing triphenylamino units in polymer light-emitting devices[J]. Chem. Phys. Lett., 2007, 441:277-281.
Liang A H, Wang Y F, Liu Y, et al. Synthesis, photophysical and electrochemical characterization of the heteroleptic iridium complexes with modified ancillary ligand by carrier-transporting groups[J]. Chin. J. Chem., 2010, 28(12):2455-2462.
Ding J Q, Lv J H, Cheng Y X, et al. Solution-processible red iridium dendrimers based on oligocarbazole host dendrons: Synthesis, properties, and their applications in organic light-emitting diodes[J]. Adv. Funct. Mater., 2008, 18(18):2754-2762.
Liu H M, He J, Wang P F, et al. High-efficiency polymer electrophosphorescent diodes based on an Ir(Ⅲ) complex[J]. Appl. Phys. Lett., 2005, 87(22):221103-1-3.
Noh Y Y, Lee C L, Kim J J, et al. Energy transfer and device performance in phosphorescent dye doped polymer light emitting diodes[J]. J. Chem. Phys., 2003, 118:2853-2864.
0
浏览量
106
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构