浏览全部资源
扫码关注微信
新疆师范大学物理与电子工程学院 物理系, 新疆矿物发光材料及其微结构实验室, 新疆 乌鲁木齐 830054
收稿日期:2014-07-25,
修回日期:2014-08-11,
纸质出版日期:2014-10-03
移动端阅览
阿孜古丽·热合曼, 何久洋等. Eu3+掺杂方钠石荧光材料的合成及发光特性[J]. 发光学报, 2014,35(10): 1194-1200
Aziguli Reheman, HE Jiu-yang, Muyassar Kaiheriman etc. Synthesis and Luminescence Properties of Eu3+ Doped Sodalite Fluorescent Phosphor[J]. Chinese Journal of Luminescence, 2014,35(10): 1194-1200
阿孜古丽·热合曼, 何久洋等. Eu3+掺杂方钠石荧光材料的合成及发光特性[J]. 发光学报, 2014,35(10): 1194-1200 DOI: 10.3788/fgxb20143510.1194.
Aziguli Reheman, HE Jiu-yang, Muyassar Kaiheriman etc. Synthesis and Luminescence Properties of Eu3+ Doped Sodalite Fluorescent Phosphor[J]. Chinese Journal of Luminescence, 2014,35(10): 1194-1200 DOI: 10.3788/fgxb20143510.1194.
采用水热反应及后期热处理工艺合成了Eu
3+
掺杂方钠石结构的荧光材料Na
8
Al
6
Si
6
O
24
(OH)
2
(H
2
O/NO
3
)
2
:Eu
3+
。SEM图像显示,所合成的样品由一些长棒状和不规则多面体结构组成,平均粒径约为0.6 m和2 m。样品在394 nm(对应于Eu
3+
离子的
7
F
0
5
L
6
跃迁)激发下发出单色性较好的红色荧光,相应的色坐标值为(0.613 6,0.337 7),色纯度为85.5%,量子效率为0.36。随着Eu
3+
掺杂摩尔分数的增大,样品的红色荧光增强。当Eu
3+
摩尔分数超过7%时发生部分相变现象。发光热猝灭研究发现,样品的相对亮度和红色比在37~100 ℃内比较稳定。
Eu
3+
doped Na
8
Al
6
Si
6
O
24
(OH)
2
(H
2
O/NO
3
)
2
phosphors were synthesized by hydrothermal method and after heat treatment conditions. SEM images show that the samples are composed of some long rod shape and irregular polyhedron structure
and the average particle sizes are about 0.6 and 2 m
respectively. The samples can be excited efficiently by 394 nm (corresponding to the
7
F
0
5
L
6
transition in Eu
3+
) and emit red fluorescence with better monochromaticity. The color coordinate of the red fluorescence is (0.613 6
0.337 7)
and the color purity is 85.5%. The luminescence intensity increases with the increasing of Eu
3+
concentration. Part of the phase change occurs when Eu
3+
mole fraction is more than 7%. Thermal quenching measurements show that the relative brightness and red ratio of the samples are stable to the change of the temperature in the range of 37-100 ℃.
Sidike A, Sawuti A, Yamashita N, et al. Fine structure in photoluminescence spectrum of S2- center in sodalite[J]. Phys. Chem. Miner., 2007, 34:477-484.
Kaiheriman M, Maimaitinaisier A, Rehiman A, et al. Photoluminescence properties of green and red luminescence from natural and heat-treated sodalite[J]. Phys. Chem. Miner., 2014, 41(3):227-235.
Maimaitinaisier A, Kaiheriman M, Sidike A. Luminescence properties of Cu doped natural sodalite under ultraviolet-vis excitation[J]. Chin. J. Lumin.(发光学报), 2013, 34(12):1596-1602 (in Chinese).
Tarashchan A. Luminescence of Minerals[M]. Kiev: Naukova Dumka, 1978:296.
Borhade A V, Dhol A G. Synthesis and crystal structure of chlorate-enclathrated in aluminogermanate sodalite Na8[AlGeO4]6(ClO3)2[J]. Mater. Sci.-Poland, 2013, 31(2):246-252.
Kuhl G H. High-silica analogs of zeolite containing intercalated phosphate[J]. Inorg. Chem., 1971, 10:2488-2495.
Cooper E R, Andrews C D, Wheatley P S, et al. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues[J]. Nature, 2004, 430:1012-1016.
Chang I F, Onton A. Optical properties of photochromatic sulfur-doped chlorosodalite[J]. Electron. Mater., 1973, 2:17-46.
Van Doorn C Z, Schipper D J. Luminescence of O-2, Mn2+ and Fe3+ in sodalite[J]. Phys. Lett. A, 1971, 34:139-140.
Chang J Z, Li M, Shi H Z. Synthesis characterization and luminescence properties of novel Eu3+ doped aluminosilicate[J]. J. Iorg. Mater.(无机材料学报), 2006, 21(3):564-570 (in Chinese).
Ohno K, Abe T. Effect of BaF2 on the synthesis of the single phase cubic YAG:Tb[J]. J. Electrochem. Soc., 1986, 133:638-643.
Gao Y, Shi C S, Wu Y. Luminescence properties of SrB4O7:Eu, Tb phosphors[J]. Mater. Res. Bull., 1996, 31(5):439-444.
Wu Y H, Liu J G, Fu P H, et al. A new lanthanum and calcium borate La2CaB10O19[J]. Chem. Mater., 2001, 13:753-755.
Cai J J, Pan H H, Wang Y. Luminescence properties of red-emitting Ca2Al2SiO7:Eu3+ nanoparticles prepared by sol-gel method[J]. Rare Metals, 2011, 30(4):374-380.
Guan L, Mao Y H, Jin L T, et al. Preparation and luminescence properties of BaAl2Si2O8:Eu3+ phosphor[J]. Chin. J. Chromatogr.(硅酸盐学报), 2011, 39(5):779-782 (in Chinese).
Li C X, Xu S Q, Ye R G, et al. Optical properties of Eu2+/Eu3+ doped SiO2-Al2O3-ZnO-K2CO3 glass-ceramic[J]. Acta Optica Sinica (光学学报), 2010, 30(4):1084-1087 (in Chinese).
Shi W J, Zhang X Y, Li C Y, et al. Synthesis and luminescent properties of NaAlSiO4:Eu3+ phosphors using coal fly ash as starting materials[J]. J. Chin. Rare Earth Soc.(中国稀土学报), 2012, 30(3):315-319 (in Chinese).
Chang J Z, Wang Z L, Li M, et al. Photoluminescence properties and energy transfer process of NaAlSiO4:Tb3+, Eu3+ phosphor[J]. J. Chin. Rare Earth Soc.(中国稀土学报), 2009, 27(6):750-755 (in Chinese).
Jiao H Y, Wang Y H. Intense red phosphors for near-ultraviolet light-emitting diodes[J]. Appl. Phys. B, 2010, 98(2-3):423-427.
Zhao Q B, Chow S J, Fan T X, et al. Enhancement of light harvesting, luminescence and afterglow of Eu3+ doped calcium silicate through biogenic pore hierarchy[J]. J. Shandong Univ.(山东大学学报), 2010, 40(3):95-98 (in Chinese).
Blasse G. Energy transfer in oxidic phosphors[J]. Philips Res. Rep., 1969, 24:131-144.
Chen W J, Lin M R, Jang H L. Analysis of kinetic model of double exponential fluorescence decay[J]. Acta Optica Sinica (光学学报), 1986, 6(12):1124-1129 (in Chinese).
0
浏览量
272
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构