浏览全部资源
扫码关注微信
集成光电子学国家重点联合实验室吉林大学实验区 吉林大学电子科学与工程学院,吉林 长春,130012
收稿日期:2014-02-21,
修回日期:2014-05-27,
纸质出版日期:2014-09-03
移动端阅览
杨永强, 段羽, 陈平等. 低温原子层沉积氧化铝作为有机电致发光器件的封装薄膜[J]. 发光学报, 2014,35(9): 1087-1092
YANG Yong-qiang, DUAN Yu, CHEN Ping etc. Deposition of Al<sub>2</sub>O<sub>3</sub> Film Using Atomic Layer Deposition Method at Low Temperature as Encapsulation Layer for OLEDs[J]. Chinese Journal of Luminescence, 2014,35(9): 1087-1092
杨永强, 段羽, 陈平等. 低温原子层沉积氧化铝作为有机电致发光器件的封装薄膜[J]. 发光学报, 2014,35(9): 1087-1092 DOI: 10.3788/fgxb20143509.1087.
YANG Yong-qiang, DUAN Yu, CHEN Ping etc. Deposition of Al<sub>2</sub>O<sub>3</sub> Film Using Atomic Layer Deposition Method at Low Temperature as Encapsulation Layer for OLEDs[J]. Chinese Journal of Luminescence, 2014,35(9): 1087-1092 DOI: 10.3788/fgxb20143509.1087.
为了克服传统的原子层深沉积反应温度高于有机材料的玻璃化温度对有机电致发光器件性能产生破坏的缺点,使用低温原子层沉积的方法沉积了Al
2
O
3
薄膜,成功地实现了对OLED的薄膜封装。实验中为了抑制环境温度对ALD薄膜均匀性的影响,增加了每个反应周期的抽气时间,从而可以充分地排出反应副产物,抑制了空位的形成,使得薄膜具有较高的均匀性和致密性。微观形貌分析、钙测试以及寿命测试表明,通过增加ALD的PGT,低温制备的薄膜与高温制备的薄膜的均匀性差别较小,且制备过程对OLED器件的光电性能无明显影响。低温制备的薄膜水汽透过率(WVTR)可以达到8.610
-4
g/(m
2
d),能够有效地提高有机电致发光器件的寿命。
In order to avoid the damage of high reaction temperature to OLEDs
the low-temperature atomic layer deposition (ALD) process was introduced to deposite Al
2
O
3
film for the encapsulation of OLEDs. However
the low temperature condition would decrease the uniformity of the film. In order to suppress the generating of vacancy
the pumping gas time(PGT) was increased during each cycle to discharge the products adequately. The micrographs
calcium test and lifetime test of OLEDs show that the film deposited at low temperature is almost the same with that deposited at high temperature
and the temperature effect to OLEDs is not negligible. The water vapor transmission rate (WVTR) of the film can reach to 8.610
-4
g/(m
2
d)
so the lifetime of the device with the encapsulation layer can be increased effectively.
Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices [J]. Science, 1999, 283(5409):1900-1902.
Carcia P F, McLean R S, Reilly M H, et al. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers [J]. Appl. Phys. Lett., 2006, 89(3):031915-1-4.
Choi M C, Kim Y, Ha C S. Polymer for flexible displays: From material selection to device applications [J]. Prog. Polym. Sci., 2008, 33(6):581-630.
Park J S, Chae H, Chung H K, et al. Thin film encapsulation for flexible AM-OLED: A review [J]. Semicond. Sci. Technol., 2011, 26(3):034001-1-9.
Gao S Y, Kong X Z, Zhang F H, et al. Research progress of thin film encapsulation of organic light-emitting devices [J].Chin. J. Liq. Cryst. Disp.(液晶与显示), 2012, 27(2):198-203 (in Chinese).
Weng W X, Yu G D, Jia Z, et al. Oxidation-resistant of Cr/Cu/Al/Cr thin film electrodes [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(2):183-187 (in Chinese).
Zhao J Q, Han S H, Xie S J, et al. Influences of polymer substrates on flexible light-emitting diodes [J]. Chin. J. Lumin.(发光学报), 2003, 24(5):540-544 (in Chinese).
Huang W D, Wang X H, Sheng M, et al. Low temperature PECVD SiN</em>x films applied in OLED packaging [J]. Mater. Sci. Eng. B, 2003, 98(3):248-254.
Granstrom J, Swensen J S, Moon J S, et al. Encapsulation of organic light-emitting devices using a perfluorinated polymer [J]. Appl. Phys. Lett., 2008, 93(19):193304-1-4.
Meyer J, Gorrn P, Bertram F, et al. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriersA strategy for reliable encapsulation of organic electronics [J]. Adv. Mater., 2009, 21(18):1845-1849.
Wei Y W, Liu Z C, Chen S L. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions [J]. Chin. Opt.(中国光学), 2011, 4(2):188-195 (in Chinese).
Kim H K, Kim M S, Kang J W, et al. High-quality thin-film passivation by catalyzer-enhanced chemical vapor deposition for organic light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(13):013502-1-3.
Shen Z F. Preparation of specific refractive index material and optical thin films [J]. Chin. Opt.(中国光学), 2013, 6(6): 900-905 (in Chinese).
Steven M G. Atomic layer deposition: An overview [J]. Chem. Rev., 2010, 110(1):111-131.
Paetzold R, Winnacker A, Henseler D, et al. Permeation rate measurements by electrical analysis of calcium corrosion [J]. Rev. Sci. Instrum., 2003, 74(12):5147-5150.
Yang Y Q, Duan Y, Chen P, et al. Realization of thin film encapsulation by atomic layer deposition of Al2O3 at low temperature [J]. J. Phys. Chem. C, 2013, 117(39):20308-20312.
Leskela M, Ritala M. Atomic layer deposition(ALD): From precursors to thin film structures [J]. Thin Solid Films, 2002, 409(1):138-146.
Sneh O, Phelps R. Thin film atomic layer deposition equipment for semiconductor processing [J]. Thin Solid Films, 2001, 402(1):248-261.
George S M, Ott A W. Surface chemistry for atomic layer growth [J]. J. Phys. Chem., 1996, 100(31):13121-13131.
Groner M D, Fabreguette F H, Elam J.W, et al. Low-temperature Al2O3 atomic layer deposition [J]. Chem. Mater., 2004, 16(4):639-645.
Meyer J, Schneidenbach D, Winkler T, et al. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition [J]. Appl. Phys. Lett., 2009, 94(23):233305-1-3.
0
浏览量
152
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构