浏览全部资源
扫码关注微信
贵州大学纳米光子物理研究所 光电子技术与应用省重点实验室,贵州 贵阳,550025
收稿日期:2014-06-12,
修回日期:2014-07-13,
纸质出版日期:2014-09-03
移动端阅览
尹君, 黄伟其, 黄忠梅等. 表面键合对硅(111)量子面电子结构的影响[J]. 发光学报, 2014,35(9): 1082-1086
YIN Jun, HUANG Wei-qi, HUANG Zhong-mei etc. Influence of Surface Bond on Electronic Structure of Si (111) Quantum Surface[J]. Chinese Journal of Luminescence, 2014,35(9): 1082-1086
尹君, 黄伟其, 黄忠梅等. 表面键合对硅(111)量子面电子结构的影响[J]. 发光学报, 2014,35(9): 1082-1086 DOI: 10.3788/fgxb20143509.1082.
YIN Jun, HUANG Wei-qi, HUANG Zhong-mei etc. Influence of Surface Bond on Electronic Structure of Si (111) Quantum Surface[J]. Chinese Journal of Luminescence, 2014,35(9): 1082-1086 DOI: 10.3788/fgxb20143509.1082.
将纳米硅薄膜看成理想的一维限制的量子面结构,通过第一性原理计算研究了不同厚度的硅(111)量子面的能带结构及态密度。随着量子面厚度的变化,在SiH键钝化较好的量子面结构上,其带隙宽度变化主要遵循量子限制效应规律。当在表面掺杂时,模拟计算表面含SiN键的硅(111)量子面的结果表明:在一定厚度范围内,带隙宽度主要由量子限制效应决定;超过这个厚度,带隙宽度同时受量子限制效应和表面键合结构的影响。保持量子面厚度不变,表面掺杂浓度越大则带隙变窄效应越明显。同样,模拟计算含SiYb键的硅(111)量子面的结果也有同样的效应。几乎所有的模拟计算结果都显示:量子面的能带结构均呈现出准直接带隙特征。
We regard the nanocrystalline silicon films as an ideal one-dimensional quantum limiting surface structure
and study the band structure and density of states of the different thickness silicon (111) quantum surface by the first-principles calculation. As the change of the thickness of the quantum surface well passivated by SiH bond
the band gap mainly follow the quantum confinement effect. When the silicon (111) quantum surface contains SiN bond
the simulated results show that the band gap is mainly determined by the quantum confinement effect in a certain range of thickness
but beyond the thickness
the band gap is determined by both the quantum confinement effect and bond structure. While maintaining a constant thickness
the greater doping concentration of the quantum surface
the more obvious the band gap narrowing effect. Similarly
the simulated result of silicon (111) quantum surface which contain SiYb has the same effect. It is worth noting that almost all of the simulated results show that the band structures of the quantum surface show quasi-direct band gap characteristics.
Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57(10):1046-1048.
Wolkin M V, Jorne J, Fauchet P M, et al. Electronic states and luminescence in porous silicon quantum dots: The role of oxygen [J]. Phys. Rev. Lett., 1999, 82(1):197-200.
Qin G G, Li Y J. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide [J]. Phys. Rev. B, 2003, 68(8):085309-1-7.
Qin G G, Jia Y Q. Mechanism of the visible luminescence in porous silicon [J]. Solid State Commun., 1993, 86(9):559-563.
Huang W Q, Miao X J, Huang Z M, et al. Activation of silicon quantum dots for emission [J]. Chin. Phys. B, 2012, 21(9):094207-1-6.
Huang W Q, Huang Z M, Chen H Q, et al. Electronic states and curved surface effect of silicon quantum dots [J]. Appl. Phys. Lett., 2012, 101(13):171601-1-4.
Huang W Q, Yin J, Zhou N J, et al. Curved surface effect and emission on silicon nanostructures [J]. Chin. Phys. B, 2013, 22(10):104204-1-7.
Payne M C. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64(4):1045-1097.
Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory [J]. Phys. Rev. Lett., 1985, 55(22):2471-2474.
Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter., 2002, 14:2717-2744.
Marlo M, Milman V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals [J]. Phys. Rev. B, 2000, 62(4):2899-2907.
Qi Y H, Hou Q Y, Su X Y. Electronic structure and optical properties of ZnS system doped with different 3d transition metals [J]. Chin. J. Lumin.(发光学报), 2009, 30(4):515-519 (in Chinese).
Wagner J, Del Alamo J A. Bandgap narrowing in heavily doped silicon: A comparison of optical and electrical [J]. J. Appl. Phys., 1988, 63(2):425-429.
Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state [J]. J. Chem. Phys., 1984, 80(9):4403-4409.
0
浏览量
315
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构