浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院,河北 保定,071002
收稿日期:2014-05-28,
修回日期:2014-07-22,
纸质出版日期:2014-09-03
移动端阅览
蔡淑珍, 刘琳琳, 李明明等. Er<sup>3+</sup>,Yb<sup>3+</sup>共掺杂的NaYF<sub>4</sub>荧光粉的制备及下转换发光研究[J]. 发光学报, 2014,35(9): 1058-1064
CAI Shu-zhen, LIU Lin-lin, LI Ming-ming etc. Synthesis and Down-conversion Luminescence of Er<sup>3+</sup>,Yb<sup>3+</sup> Codoped NaYF<sub>4</sub> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(9): 1058-1064
蔡淑珍, 刘琳琳, 李明明等. Er<sup>3+</sup>,Yb<sup>3+</sup>共掺杂的NaYF<sub>4</sub>荧光粉的制备及下转换发光研究[J]. 发光学报, 2014,35(9): 1058-1064 DOI: 10.3788/fgxb20143509.1058.
CAI Shu-zhen, LIU Lin-lin, LI Ming-ming etc. Synthesis and Down-conversion Luminescence of Er<sup>3+</sup>,Yb<sup>3+</sup> Codoped NaYF<sub>4</sub> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(9): 1058-1064 DOI: 10.3788/fgxb20143509.1058.
采用高温固相法合成了Er
3+
、Yb
3+
共掺杂的NaYF
4
荧光粉。XRD测量数据表明合成的样品为纯相。测量了样品的激发谱和发射谱,证明377 nm的紫外光通过量子剪裁的形式将能量传递给一个Yb
3+
,发射一个975 nm的红外光子,再从
4
F
9/2
能级跃迁到基态发射一个红外光子。测量了377 nm激发下,监测541 nm的发光寿命曲线,计算得到最大的量子效率为126.35%。通过监测Yb
3+
的975 nm的近红外发射,证明了Er
3+
的
4
F
7/2
和
2
H
11/2
能级通过下转换的形式将吸收的485 nm和519 nm的能量传递给Yb
3+
。这种将Er
3+
在可见光波段的多种光子能量传递给Yb
3+
发射975 nm的近红外光子的思想在以前的研究中从未被提出。
Er
3+
Yb
3+
doped NaYF
4
phosphors were prepared by high-temperature solid state method. Structures of the samples were investigated by X-ray diffraction. The excitation and emission spectra of the phosphors were measured. The 377 nm photon jumped from
4
G
11/2
to
4
F
9/2
and the energy was transferred to
2
F
5/2
energy level of Yb
3+
. A 975 nm near-infrared photon was thus obtained. Then
the photon in
4
F
9/2
jumped to the ground state and emitted a 670 nm red photon. Furthermore
the luminescence decay curves of 541 nm emission excited by 377 nm were measured
and the quantum efficiencies were calculated. The maximum quantum efficiency was 126.35%. By monitoring the 975 nm emission
the energy transfer from
4
F
7/2
(485 nm) and
2
H
11/2
(519 nm) of Er
3+
to Yb
3+
also occurred by down-conversion. This research has not been done before.
Huang X Y, Han S Y, Huang W, et al. Enhancing solar cell efficiency the search for luminescent materials as spectral converters [J]. Chem. Soc. Rev., 2013, 42:173-201.
Xu Y S, Zhang X H, Dai S X, et al. Efficient near-infrared down-conversion in Pr3+-Yb3+ codoped glasses and glass ceramics containing LaF3 nanocrystals [J]. J. Phys. Chem. C, 2011, 115:13056-13062.
Ende B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells [J]. Phys. Chem. Chem. Phys., 2009, 11:11081-11095.
Huang X Y, Ji X H, Zhang Q Y. Broadband downconversion of ultraviolet light to near-infrared emission in Bi3+-Yb3+-codoped Y2O3 phosphors [J]. J. Am. Ceram. Soc., 2011, 94(3):833-837.
Liu Z J, Li J Y, Yang L Y, et al. Efficient near-infrared quantum cutting in Ce3+-Yb3+ codoped glass for solar photovoltaic [J]. Sol. Energy Mater. Sol. Cells, 2014, 122:46-50.
Zhang Q, Zhu B, Zhuang Y X, et al. Quantum cutting in Tm3+,Yb3+-codoped lanthanum aluminum germanate glasses [J]. J. Am. Ceram. Soc., 2010, 93(3):654-657.
Zheng W, Zhu H M, Li R F, et al. Visible-to-infrared quantum cutting by phonon-assisted energy transfer in YPO4:Tm3+,Yb3+phosphors [J]. Phys. Chem. Chem. Phys., 2012, 14(19):6649-7180.
Duan Q Q, Qin F, Zhang Z G, et al. Quantum cutting mechanism in NaYF4:Tb3+,Yb3+ [J]. Opt. Lett., 2012, 37(4):521-523.
Vergeer P, Vlugt T J H, Kox M H F, et al. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+ [J]. Phys. Rev. B, 2005, 71(1):014119-1-4.
Chen D Q, Yu Y L, Wang Y S, et al. Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+:TbF3 nanocrystals embedded glass ceramics [J]. J. Phys. Chem. C, 2009, 113:6406-6410.
Lin H, Yan X H, Wang X F. Synthesis and blue to near-infrared quantum cutting of Pr3+/Yb3+ co-doped Li2TeO4 phosphors [J]. Mater. Sci. Eng. B, 2011, 176:1537-1540.
Deng K, Wei X, Wang X, et al. Near-infrared quantum cutting via resonant energy transfer from Pr3+ to Yb3+ in LaF3 [J]. Appl. Phys. B, 2011, 102:555-558.
Yan Q Q, Ren J, Tong Y, et al. Near-infrared quantum cutting of Eu2+/Yb3+ codoped chalcohalide glasses [J]. J. Am. Ceram. Soc., 2013, 96(5):1349-1351.
Sun J Y, Sun Y N, Zeng J H, et al. Near-infrared quantum cutting in Eu2+, Yb3+ co-doped Sr3Gd(PO4)3 phosphor [J]. Opt. Mater., 2013, 35:1276-1278.
Fang Z J, Cao R P, Zhang F T, et al. Efficient spectral conversion from visible to near-infrared in transparent glass ceramics containing Ce3+-Yb3+ codoped Y3Al5O12 nanocrystals [J]. J. Mater. Chem. C, 2014, 2:2204-2211.
Zou S F, Zhang Z L, Zhang F. High efficient quantum cutting in Ce3+/Yb3+ co-doped oxyfluoride glasses [J]. J. Alloys Compd., 2013, 572:110-112.
Chen J D, Zhang H, Li F, et al. High efficient near-infrared quantum cutting in Ce3+, Yb3+ co-doped LuBO3 phosphors [J]. Mater. Chem. Phys., 2011, 128:191-194.
Guo L N, Wang Y H, Zhang J, et al. Near-infrared quantum cutting in Ho3+, Yb3+-codoped BaGdF5 nanoparticles via first- and second-order energy transfers [J]. Nano. Res. Lett., 2012, 7:636-639.
Meijer J M, Aarts L D, Ende B M, et al. Downconversion for solar cells in YF3:Nd3+,Yb3+ [J]. Phys. Rev. B, 2010, 81(3):035107-1-6.
Xia Z G, Luo Y, Guan M, et al. Near-infrared luminescence and energy transfer studies of LaOBr doped with Nd3+/Yb3+ [J]. Opt. Express, 2012, 20(S5):A722-1-5.
Yang Z, Guo C F, Chen Y Q. Hydrothermal synthesis and up-conversion luminescence of Ho3+/Yb3+ co-doped CaF2 [J]. Chin. Phys. B, 2014, 23(6):064212-1-5.
Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals [J]. Chem. Soc. Rev., 2009, 38:976-989.
Eilers J J, Biner D, Wijngaarden J T. Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9 [J]. Appl. Phys. Lett., 2010, 96(15):151106-1-3.
Bo F, Chlique C, Conanec O M, et al. Near-infrared quantum cutting material Er3+/Yb3+ doped La2O2S with an external quantum yield higher than 100% [J]. J. Phys. Chem. C, 2012, 116:11652-11657.
Xiao S, Yang X, Ding J W. Red and near infrared down-conversion in Er3+/Yb3+ co-doped YF3 performed by quantum cutting [J]. Appl. Phys. B, 2010, 99:769-773.
0
浏览量
224
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构