浏览全部资源
扫码关注微信
1. 东北大学 理学院,辽宁 沈阳,110819
2. 功能材料物理与化学教育部重点实验室 吉林师范大学,吉林 四平,136000
收稿日期:2014-05-02,
修回日期:2014-07-03,
纸质出版日期:2014-09-03
移动端阅览
陈肖慧, 袁曦, 华杰等. 壳层相关的CdSe核/壳量子点发光的热稳定性[J]. 发光学报, 2014,35(9): 1051-1057
CHEN Xiao-hui, YUAN Xi, HUA Jie etc. Shell-dependent Thermal Stability of CdSe Core/shell Quantum Dot Photoluminescence[J]. Chinese Journal of Luminescence, 2014,35(9): 1051-1057
陈肖慧, 袁曦, 华杰等. 壳层相关的CdSe核/壳量子点发光的热稳定性[J]. 发光学报, 2014,35(9): 1051-1057 DOI: 10.3788/fgxb20143509.1051.
CHEN Xiao-hui, YUAN Xi, HUA Jie etc. Shell-dependent Thermal Stability of CdSe Core/shell Quantum Dot Photoluminescence[J]. Chinese Journal of Luminescence, 2014,35(9): 1051-1057 DOI: 10.3788/fgxb20143509.1051.
测量了CdSe/ZnS (3 ML)核/壳结构及CdSe/CdS (3 ML)/ZnCdS (1 ML)/ZnS (2 ML) 核/多壳层结构量子点在80~460 K范围内的光致发光光谱,研究了壳层结构对CdSe量子点发光热稳定性的影响。详细地分析了CdSe量子点的发光峰位能量、线宽和积分强度与温度之间的关系,发现CdSe量子点的发光热稳定性依赖于壳层结构。CdS/ZnCdS/ZnS多壳层结构包覆CdSe量子点在低温和高温部分的热激活能均大于ZnS壳层包覆的CdSe量子点,具有更好的发光热稳定性。此外,在300-460-300 K加热-冷却循环实验中,CdS/ZnCdS/ZnS多壳层结构包覆CdSe量子点的发光强度永久性损失更少,热抵御能力更强。
The photoluminescence (PL) spectra of CdSe/ZnS (3 ML) core/shell quantum dots (QDs) and CdSe/CdS (3 ML)/ZnCdS (1 ML)/ZnS (2 ML) core/multishell QDs were measured in the temperature range from 80 to 460 K by steady-state PL spectroscopy. The temperature dependence of PL energy
linewidth
and intensity for CdSe QDs was investigated. It is found that the thermal stability of CdSe QD emissions is significantly dependent on the shell structure. The thermal activation energy of CdSe/CdS/ZnCdS/ZnS core/multishell QDs is higher than that of CdSe/ZnS core/shell QDs. Furthermore
the stability of CdSe QDs at high temperature was also examined through heating-cooling cycling experiments. The permanent loss of PL intensity for CdSe/CdS/ZnCdS/ZnS core/multishell QDs is smaller than that of CdSe/ZnS core/shell QDs.
Coe S, Woo W K, Bawendi M G, et al. Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J]. Nature, 2002, 420(6917):800-803.
Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science, 2002, 295(5598):1506-1508.
Xu T T, Qiao Q Q. Conjugated polymer-inorganic semiconductor hybrid solar cells [J]. Energy Environ. Sci., 2011, 4(8):2700-2720.
Shao C, Liu X Y, Zhao J L. Effect of mercaptopropionic acid molecules on electron transfer from CdSe core/shell quantum dots to ZnO nanocrystal films [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):26-31 (in Chinese).
Wang X Y, Liu X Y, Zhao J L. Synthesis and luminescence properties of CuInS2 nanocrystals [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):7-11 (in Chinese).
Dabbousi B O, Rodriguez V J, Mikulec F V, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nnocrystallites [J]. J. Phys. Chem. B, 1997, 101(46):9463-9475.
Xie R G, Kolb U, Li J X, et al. Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals [J]. J. Am. Chem. Soc., 2005, 127(20):7480-7488.
Zhao Y, Riemersma C, Pietra F, et al. High-temperature luminescence quenching of colloidal quantum dots [J]. ACS Nano, 2012, 6(10):9058-9067.
Bachmann V, Ronda C, Meijerink A, Temperature quenching of yellow Ce3+ luminescence in YAG:Ce [J]. Chem. Mater., 2009, 21(10):2077-2084.
Valerini D, Cret A, Lomascolo M, et al. Temperature dependence of the photoluminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix [J]. Phys. Rev. B, 2005, 71(23):235-409.
Morello G, De Giorgi M, Kudera S, et al. Temperature and size dependence of nonradiative relaxation and exciton-phonon coupling in colloidal CdTe quantum dots [J]. J. Phys. Chem. C, 2007, 111(16):5846-5849.
Wuister S F, Van Houselt A, De Mello D C, et al. Temperature antiquenching of the luminescence from capped CdSe quantum dots [J]. Angew. Chem. Int. Ed., 2004, 43(23):3029-3033.
Zheng J, Ji W, Wang X, et al. Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell [J]. J. Phys. Chem. C, 2010, 114(36):15331-15336.
Yuan X, Zheng J, Zeng R, et al. Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots [J]. Nanoscale, 2014, 6(1):300-307.
Al Salman A, Tortschanoff A, Mohamed M B, et al. Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods [J]. Appl. Phys. Lett., 2007, 90(9):093104-1-3.
Ramvall P, Tanaka S, Nomura S, et al. Confinement induced decrease of the exciton-longitudinal optical phonon coupling in GaN quantum dots [J]. Appl. Phys. Lett., 1999, 75(13):1935-1937.
Wan J Z, Brebner J L, Leonelli R, et al. Temperature dependence of free-exciton photoluminescence in crystalline GaTe [J]. Phys. Rev. B, 1993, 48(8):5197-5201.
Baranov A V, Rakovich Y P, Donegan J F, et al. Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots [J]. Phys. Rev. B, 2003, 68(16):165306-1-7.
Lange H, Artemyev M, Woggon U, et al. Experimental investigation of exciton-LO-phonon couplings in CdSe/ZnS core/shell nanorods [J]. Phys. Rev. B, 2008, 77(19):193303-1-6.
Takagahara T. Electron-phonon interactions and excitonic dephasing in semiconductor nanocrystals [J]. Phys. Rev. Lett., 1993, 71(21):3577-3580.
Schnitt-Rink S, Miller D A B, Chemla D S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites [J]. Phys. Rev. B, 1987, 35(15):8113-8125.
Chen X, Wang X, Zhao J. Temperature-dependent photoluminescence of ZnCuInS quantum dots [J]. Chin. J. Lumin.(发光学报), 2012, 33(9):923-928 (in Chinese).
0
浏览量
378
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构