浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2014-04-26,
修回日期:2014-06-05,
纸质出版日期:2014-08-03
移动端阅览
张继森, 张立国, 任建岳等. Ce<sup>3+</sup>和Yb<sup>3+</sup>共掺杂的Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> 可见及量子剪裁近红外发光性质[J]. 发光学报, 2014,35(8): 891-896
ZHANG Ji-sen, ZHANG Li-guo, REN Jian-yue etc. Properties of Visible and NIR Emissions with Quantum Cutting in Ce<sup>3+</sup>-Yb<sup>3+</sup>-codoped Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> Powder Materials[J]. Chinese Journal of Luminescence, 2014,35(8): 891-896
张继森, 张立国, 任建岳等. Ce<sup>3+</sup>和Yb<sup>3+</sup>共掺杂的Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> 可见及量子剪裁近红外发光性质[J]. 发光学报, 2014,35(8): 891-896 DOI: 10.3788/fgxb20143508.0891.
ZHANG Ji-sen, ZHANG Li-guo, REN Jian-yue etc. Properties of Visible and NIR Emissions with Quantum Cutting in Ce<sup>3+</sup>-Yb<sup>3+</sup>-codoped Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> Powder Materials[J]. Chinese Journal of Luminescence, 2014,35(8): 891-896 DOI: 10.3788/fgxb20143508.0891.
室温下观察了YAG:Ce和YAG:Ce,Yb材料在可见以及近红外区域的发光特性,并通过对Ce
3+
的5d能级辐射跃迁寿命以及Yb
3+
的
2
F
5/2
能级布居时间和辐射跃迁寿命的比较研究,提出了光诱导的电荷转移态以及电荷转移辐射跃迁的能量传递机制,同时借助于能级图描述了从Ce
3+
到Yb
3+
的量子剪裁近红外发光过程。
Ce
3+
-and Yb
3+
-doped YAG powders were prepared and the energy transfer (ET) mechanism with (Ce
3+
)
*
-Yb
3+
charge transfer transition in the powders was evaluated by the photoluminescence (PL)
the photoluminescence excitation (PLE) and the lifetime. The possibility of the NIR emission of QC was also discussed because the 1 000 nm emission of Yb
3+
just meets the largest spectral response of c-Si solar cells
which may have potential application in enhancing the conversion efficiency of c-Si solar cells.
Blasse G, Bril A. Investigation some Ce3+-activated phosphors [J]. J. Chem. Phys., 1967, 47(12):5139-5145.
Wojtowicz A J, Lempicki A, Wisniewski D, et al. The carrier capture and recombination processes in Ln3+-activated scintillation [J]. Nucl. Sci., 1996, 43(3):2168-2173.
Liu X R. Phosphors for white LED solid state lighting [J]. Chin. J. Lumin.(发光学报), 2007, 28(3):291-301 (in Chinese).
Trupke T, Green M A, Wrfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys., 2002, 92(3):1668-1674.
Richards B S. Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(20):2329-2337.
Richards B S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion [J]. Sol. Energy Mater. Sol. Cells, 2006, 90(20):1189-1207.
Strmpel C, McCann M, Beaucarne G, et al. Modifying the solar spectrum to enhance silicon solar cell efficiencyAn overview of available materials [J]. Sol. Energy Mater. Sol. Cells, 2007, 91(4):238-249.
Van der Zwaan B, Rabl A. Prospects for PV: A learning curve analysis [J]. Sol. Energy, 2003, 74(1):19-31.
Vergeer P, Vlugt T J H, Kox M H F, et al. Quantum cutting by cooperative energy transfer in YbxY1-xPO4:Tb3+ [J]. Phys. Rev. B, 2005, 71(1):014119-1-11.
Zhang Q Y, Yang C H, Pan Y X. Cooperative quantum cutting in one-dimensional (YbxGdx)Al3(BO3)4:Tb3+ nanorods [J]. Appl. Phys. Lett., 2007, 90(2):021107-1-3.
Zhang Q Y, Yang C H, Jiang Z H, et al. Concentration-dependent near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ nanophosphors [J]. Appl. Phys. Lett., 2007, 90(6):061914-1-3.
Zhang Q Y, Yang G F, Jiang Z H. Cooperative downconversion in GdAl3(BO3)4:RE3+,Yb3+ (RE=Pr, Tb, and Tm) [J]. Appl. Phys. Lett., 2007, 91(5):051903-1-3.
Zhang Q Y, Huang X Y. Recent progress in quantum cutting phosphors [J]. Prog. Mater. Sci., 2010, 55(5):353-427.
Van der Ende B M, Aarts L, Meijerink A. Lanthanide ions as spectral converters for solar cells [J]. Phys. Chem. Chem. Phys., 2009, 11(47):11081-11095.
Chen D Q, Wang Y S, Yu Y L, et al. Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses [J]. J. Appl. Phys., 2008, 104(11):116105-1-3.
Ueda J, Tanabe S. Visible to near infrared conversion in Ce3+-Yb3+ co-doped YAG ceramics [J]. J. Appl. Phys., 2009, 106(4):043101-1-3.
Lin H, Zhou S M, Teng H, et al. Near infrared quantum cutting in heavy Yb doped Ce0.03Yb3xY2.97-3xAl5O12 transparent ceramics for crystalline silicon solar cells [J]. J. Appl. Phys., 2010, 107(4):043107-1-3.
Wang L L, Xia C T, Xu P, et al. Energy transfer in Ce, Nd, and Yb co-doped YAG phosphor [J]. Chin. Opt. Lett.(光学快报), 2013, 11(6):061604-1-4 (in English).
Min X M, Shen E Z, Jiang Y S, et al. SCF-X-SW calculations on lanthanidetrifluorides [J]. Acta Chim. Sinica (化学学报), 1990, 48(10):973-980 (in Chinese).
Rivas-silva J F, Durand-Niconoff S, Schmidt T M, et al. Theoretical explanation of the quenching of luminescence in cerium-doped ytterbium oxyorthosilicate [J]. Int. J. Quant. Chem., 2000, 79(3):198-203.
Gao F M, Zhang S Y. Influence of bonding and polarization to nephelauxetic effect [J]. Chin. J. Chem. Phys.(化学物理学报), 1993, 6(4):321-327 (in Chinese).
Li Y M. Properties of bipolarons [J]. Progress in Physics (物理学进展), 1989, 9(1):63-85 (in Chinese).
Srivastava A M, Beers W W. Luminescence of Pr3+ in SrAl12O19: Observation of two photon luminescence in oxide lattice [J]. J. Lumin., 1997, 71(4):285-290.
Brunold T C, Gdel H U. In: Solomon E I, Lever A B P, eds. Inorganic Electronic Structure and Spectroscopy [M]. New York: John Wiley & Sons, Inc., 1999:259-306.
0
浏览量
103
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构