浏览全部资源
扫码关注微信
1. 国家电光源质量监督检验中心(北京) 北京,100022
2. 北京交通大学光电子技术研究所 教育部发光与光信息技术重点实验室 北京,100044
收稿日期:2014-03-07,
修回日期:2014-05-13,
纸质出版日期:2014-07-03
移动端阅览
朱映光, 梁春军, 刘姝等. 中间层对白色全磷光有机电致发光器件性能的影响[J]. 发光学报, 2014,35(7): 824-829
ZHU Ying-guang, LIANG Chun-jun, LIU Shu etc. Effect of Interlayer on Phosphorescent White Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(7): 824-829
朱映光, 梁春军, 刘姝等. 中间层对白色全磷光有机电致发光器件性能的影响[J]. 发光学报, 2014,35(7): 824-829 DOI: 10.3788/fgxb20143507.0824.
ZHU Ying-guang, LIANG Chun-jun, LIU Shu etc. Effect of Interlayer on Phosphorescent White Organic Light-emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(7): 824-829 DOI: 10.3788/fgxb20143507.0824.
制备了基于蓝色磷光材料bis[3,5-difluoro-2-(2-pridyl)phenyl-(2-earboxypyribyl)iridumⅢ](FIrpic)、红色磷光材料bis(2-methyldibenzo [f,h]
quinoxaline)(acetylacetonate)iridium(Ⅲ)(Ir(MDQ)
2
acac)的双波段白光有机电致发光器件。蓝色磷光材料FIrpic被掺杂在一种宽带隙的主体材料1,3-bis(triphenylsilyl)benzene(UGH3)之中,红色磷光材料Ir(MDQ)
2
acac被掺杂在主体材料4,4',4"-tris(carbazol-9-yl)triphenylamine(TCTA)之中,并在两发光层之间加入一种宽带隙的空穴传输材料1,3-bis(carbazol-9-yl)benzene(mCP)作为中间层。制备的器件结构为ITO/NPB(40 nm)/TCTA:Ir(MDQ)
2
acac 7%(10 nm)/mCP(
x
nm)/UGH3:Firpic 8%(30 nm)/BPhen(30 nm)/LIF(0.8 nm)/AL(200 nm)。实验结果表明,中间层的加入促进了发光层中电子和空穴的平衡并抑制了发光层之间的能量转移。加入适当厚度的中间层之后,器件的性能得到了明显的提升,相比于无中间层器件,最高电流效率由3.4 cd/A提高到13.2 cd/A。
Phosphorescent white organic light-emitting diodes with double light-emitting layers were fabricated based on phosphorescent blue emittor bis [3
5-difluoro-2-(2-pridyl)phenyl-(2-earboxypyribyl)iridumⅢ] (FIrpic) and red emittor bis(2-methyldibenzo[f
h]
quinoxaline)(acetylacetonate) iridium(Ⅲ)(Ir(MDQ)
2
acac). FIrpic was doped in an ultra wide band-gap host 1
3-bis(triphenylsilyl)benzene (UGH3)
and Ir(MDQ)
2
acac was doped in the host 4
4'
4"-tris(carbazol-9-yl)triphenylamine(TCTA). A hole transporting wide-band-gap material 1
3-bis(carbazol-9-yl)benzene (mCP) was introduced between the emitting layers. The device structure was ITO/NPB(40 nm)/TCTA:Ir(MDQ)
2
acac 7%(10 nm)/mCP(
x
nm)/UGH3:Firpic 8%(30 nm)/BPhen(30 nm)/LiF(0.8 nm)/Al(200 nm). The results show that the interlayer plays an important role of balancing charge carriers
and blocking energy transfer between the emitting layers. With an appropriate thickness of the interlayer
the device performances can be significantly enhanced. Compared with the device without interlayer
the maximum current efficiency can be enhanced from 3.4 cd/A to 13.2 cd/A.
Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device [J]. Science, 1995, 267:1332-1334.
Hsiao C H, Lan Y H, Lee P Y, et al. White organic light-emitting devices with ultra-high color stability over wide luminance range [J]. Org. Electron., 2011, 12:547-555.
Zhang S M, Chen Y, Wang X H, et al. White organic light-emitting diodes with high color rendering index using phosphorescent sensitizer and blue fluorescent emitter [J]. Chin. J. Lumin.(发光学报), 2012, 33(1):97-101 (in Chinese).
Reineke S, Linder F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency [J]. Nature, 2009, 459(7244):234-238.
Liu S Q, Yu J S. Highly efficient white organic light-emitting devices consisting of undopedultrathin yellow phosphorescent layer [J]. J. Lumin., 2013, 134:665-669.
Zhou Z, Wang F C, Liu S Q, et al. High efficient phosphor-converted white organic light-emitting diodes with red Sr2 Si5 N8:Eu2+ color conversion layer [J]. Chin. J. Lumin.(发光学报), 2012, 33(2):176-181 (in Chinese).
Kim N H, Kim Y H, Yoon J A, et al. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants [J]. J. Lumin., 2013, 143:723-728.
Liao T C, Chou H T. Enhance efficiency of blue and white organic light emitting diodes with mixed host emitting layer using TCTA and 3TPYMB [J]. Curr. Appl. Phys., 2013, 13:152-155.
Wang Z, Chen S W, Zhou X. Study on efficient blue and white organic light-emitting devices [J]. Chin. J. Lumin.(发光学报), 2011, 32(7):715-719 (in Chinese).
Ma Y, Han W, Zhang F H, et al. White organic light-emitting diodes based on mixed doping emitting layer [J].Chin. J. Liq. Cryst. Disp.(液晶与显示), 2011, 26(1):40-43 (in Chinese).
Adachi C, Baldo M A, Thompson M E. Nearly 100%internal phosphorescence efficiency in an organic light emitting device [J]. J. Appl. Phys., 2001, 90(10):5048-5051.
Ren X, Li J, Holmes R J, et al. Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices [J].Chem. Mater., 2004, 16:4743-4747.
Shen J, Yang J. Physical mechanisms in double-carrier trap-charge limited transport processes in organic electroluminescent devices: A numerical study [J]. J. Appl. Phys., 1998, 83(12):7706-7710.
Shirota Y. Photo- and electroactive amorphous molecular materialsMolecular design, syntheses, reactions, properties, and applications [J]. J. Mater. Chem., 2005, 15(1):75-93.
Kuwabar Y, Ogawa H, Inada H, et al. Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4',4"-tri(N-carbazolyl)triphenylamine (TCTA) and 4,4',4"-tris (3-methylphenylphenylamino)triphenylamine(m-MTDATA), as hole-transport materials [J]. Adv. Mater., 1998, 6:677-681.
Wang Y. Dramatic effects of hole transport layer on the efficiency of iridium-based organic light-emitting diodes [J]. Appl. Phys. Lett., 2004, 85(21):4848-4851.
Lee J H, Lee J I, Chu H Y. Efficient and color stable phosphorescent white organic light-emitting devices based on an ultra wide band-gap host [J]. Synth. Metals, 2009, 159:991-994.
De Andrade B W, Holmes R J, Forrest S R. Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J]. Adv. Mater., 2004, 16(7):624-627.
Lee J H, Lee J I, Lee J Y, et al. Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure [J]. Appl. Phys. Lett., 2009, 94(19):193305-1-4.
SunY R, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature, 2006, 440:908-912.
Schwartz G, Fehse K, Pfeiffer M, et al. Highly efficient white organic light emitting diodes comprising an interlayer to separate fluorescent and phosphorescent regions [J]. Appl. Phys. Lett., 2006, 89(8):083509-1-3.
Baldo M A, Obrien D F, Thompson M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Phys. Rev. B, 1999, 66(20):14422-14428.
Song D D, Zhao S L, Luo Y C, et al. Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching [J]. Appl. Phys Lett., 2010, 97(24):243304-1-3.
0
浏览量
134
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构