浏览全部资源
扫码关注微信
1. 重庆文理学院 新材料技术研究院 重庆,402160
2. 重庆理工大学 材料科学与工程学院 重庆,400054
3. 重庆市光电材料与器件工程技术研究中心 重庆,402160
收稿日期:2014-03-06,
修回日期:2014-05-11,
纸质出版日期:2014-07-03
移动端阅览
郎天春, 韩涛, 彭玲玲等. 近紫外LED用黄色荧光粉Sr<sub>3</sub>SiO<sub>5</sub>:Ce<sup>3+</sup>, Li<sup>+</sup>的发光特性[J]. 发光学报, 2014,35(7): 819-823
LANG Tian-chun, HAN Tao, PENG Ling-ling etc. Luminescent Properties of Sr<sub>3</sub>SiO<sub>5</sub>:Ce<sup>3+</sup>, Li<sup>+</sup> Yellow Phosphor for NUV Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(7): 819-823
郎天春, 韩涛, 彭玲玲等. 近紫外LED用黄色荧光粉Sr<sub>3</sub>SiO<sub>5</sub>:Ce<sup>3+</sup>, Li<sup>+</sup>的发光特性[J]. 发光学报, 2014,35(7): 819-823 DOI: 10.3788/fgxb20143507.0819.
LANG Tian-chun, HAN Tao, PENG Ling-ling etc. Luminescent Properties of Sr<sub>3</sub>SiO<sub>5</sub>:Ce<sup>3+</sup>, Li<sup>+</sup> Yellow Phosphor for NUV Light Emitting Diodes[J]. Chinese Journal of Luminescence, 2014,35(7): 819-823 DOI: 10.3788/fgxb20143507.0819.
采用高温固相法快速降温合成Sr
3-2
x
SiO
5
:
x
Ce
3+
,
x
Li
+
荧光粉。用X射线衍射仪和荧光分光光度计测试荧光粉的样品结构和发光性能。在1 420 ℃下煅烧得到四方相结构的Sr
3
SiO
5
:Ce
3+
,Li
+
。样品的激发光谱分布于270~500 nm的波长范围,有两个激发带,峰位分别位于328 nm和410 nm,表明样品可以被近紫外光有效激发。样品的发射光谱分布于420~650 nm,发射峰位于528 nm处。在410 nm左右的近紫外光激发下,宽带发射的峰位于528 nm。Ce
3+
的最佳掺杂量
x
(Ce
3+
)为0.8%,并且发光强度随掺杂浓度的增加先升高后降低,出现浓度猝灭。根据Dexter能量共振理论,该浓度猝灭的原因是Ce
3+
的电偶极-电偶极相互作用。
Sr
3
SiO
5
:Ce
3+
Li
+
phosphors were synthesized by the high temperature solid state reaction method. The crystal structure and luminescent properties of the samples were analyzed by X-ray diffraction and fluorescence spectrophotometer. Sr
3-2
x
SiO
5
:
x
Ce
3+
x
Li
+
samples with tetragonal phase structure can be synthesized at
1
420 ℃. The excitation spectral distribution is in the near-ultraviolet range of 270 ~ 500 nm with two bands
and the double peak positions are located at 328 nm and 410 nm
respectively. The emission spectrum under 410 nm near-ultrviolet excitation shows a broad band centered at 528 nm. The optimum doping content of Ce
3+
is
x
(Ce
3+
)=0.8%. With the increase of doping concentration
the luminescence intensity firstly increases and then decreases because of the concentration quenching effect. The concentration quenching is attribute to the dipole-dipole interaction of Ce
3+
according to Dexter theory.
Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994, 64(13):1687-1689.
Kimura N, Sakuma K, Hirafune S, et al. Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode [J]. Appl. Phys. Lett., 2007, 90(5):051109-1-3.
Park J K, Choi K J, Kim K N, et al. Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry [J]. Appl. Phys. Lett., 2005, 87(3):031108-1-3.
Schubert E F, Kim J K. Solid-state light sources getting smart [J]. Science, 2005, 308(5726):1274-1278.
Park J K, Lim M A, Kim C H, et al. White light-emitting diodes of GaN-based Sr2SiO4:Eu2+ and the luminescent properties [J]. Appl. Phys. Lett., 2003, 82(5):683-685.
Jang H S, Jeon D Y. Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(4):041906-1-3.
Won Y H, Jang H S, Im W B, et al. Tunable full-color-emitting La0.827Al11.9O19.09:Eu2+, Mn2+ phosphor for application to warm white-light-emitting diodes [J]. Appl. Phys. Lett., 2006, 89(23):231909-1-3.
Im W B, Fourr Y, Brinkley S, et al. Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1-xSr2+x-AlO5-xFx solid solutions for solid state white lighting [J]. Opt. Exp., 2009, 17(25):22673-22679
Xie R J, Hirosaki N, Kimura N, et al. 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors [J]. Appl. Phys. Lett., 2007, 90(19):191101-1-3.
Suehiro T, Onuma H, Hirosaki N, et al. Powder synthesis of Y--SiAlON and its potential as a phosphor host [J]. J. Phys. Chem. C, 2010, 114(2):1337-1342.
Krings M, Montana G, Dronskowski R, et al. -SrNCN:Eu2+ A novel efficient orange-emitting phosphor[J]. Chem. Mater., 2011, 23(7):1694-1699.
Jang H S, Kwon B H, Yang H, et al. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr3SiO5:Ce3+, Li+ based white light-emitting diode with high color rendering index [J]. Appl. Phys. Lett., 2009, 95(16):161901-1-3.
Ziegler J, Xu S, Kucur E, et al. Silica-coated InP/ZnS nanocrystals as converter material in white LEDs [J]. Adv. Mater., 2008, 20(21):4068-4073.
Jang H S, Jeon D Y. Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys. Lett., 2007, 90(4):041906-1-3.
Luo H, Liu J, Zheng X, et al. Enhanced photoluminescence of Sr3SiO5:Ce3+and tuneable yellow emission of Sr3SiO5:Ce3+, Eu2+ by Al3+ charge compensation for W-LEDs [J]. J. Mater. Chem., 2012, 22(1):15887-15893
Barry T L. Equilibria and Eu2+ luminescence of subsolidus phase bounded by Ba3MgSi2O8, Sr3MgSi2O8, Ca3MgSi2O8 [J]. J. Electrochem. Soc., 1968, 115(7):733-738
Yang J L, Wang Z. Preparation and characterization of CaWO4:Eu3+, Li+,Bi3+ red phosphor for white LEDs [J]. J. Chin. Rare Earths Soc.(稀土学报), 2010, 28(5):536-642 (in Chinese).
Reisfeld R, Minti H, Patra A, et al. Spectroscopic properties of cerium in glass and their comparison with crystals [J]. Spectrochim. Acta Part A, 1998, 54(13):2143-2150.
Dexter D L, Schulman J H. Theory of concentration quenching in inorganic phosphors [J]. J. Chem. Phys., 1954, 22 (6):1063-1066.
Sang R Y, Zhang Q J, Ma X G. Preparation of BaF2 nanoparticles by hydrothermal method [J]. Acta Scientiarum Narurallum (南开大学学报), 2013, 46(2):54-59 (in Chinese).
0
浏览量
88
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构