浏览全部资源
扫码关注微信
四川大学 材料科学与工程学院,四川 成都,610065
收稿日期:2014-04-06,
修回日期:2014-04-17,
网络出版日期:2014-04-30,
纸质出版日期:2014-07-03
移动端阅览
吴疆, 张萍, 蒋春东等. 橙红色荧光粉Ca<sub>3</sub>Y<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>:Sm<sup>3+</sup>的制备及发光特性[J]. 发光学报, 2014,35(7): 772-776
WU Jiang, ZHANG Ping, JIANG Chun-dong etc. Preparation and Luminescence Properties of Reddish-orange Phosphors Ca<sub>3</sub>Y<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>:Sm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(7): 772-776
吴疆, 张萍, 蒋春东等. 橙红色荧光粉Ca<sub>3</sub>Y<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>:Sm<sup>3+</sup>的制备及发光特性[J]. 发光学报, 2014,35(7): 772-776 DOI: 10.3788/fgxb20143507.0772.
WU Jiang, ZHANG Ping, JIANG Chun-dong etc. Preparation and Luminescence Properties of Reddish-orange Phosphors Ca<sub>3</sub>Y<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>:Sm<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2014,35(7): 772-776 DOI: 10.3788/fgxb20143507.0772.
采用高温固相法在1 400 ℃下经二次煅烧合成了橙红色荧光粉Ca
3
Y
2-
x
Si
3
O
12
:
x
Sm
3+
,研究了Sm
3+
离子掺杂浓度及助熔剂对荧光粉发光性能的影响。XRD结果显示,所合成的荧光粉的主晶相为Ca
3
Y
2
Si
3
O
12
。荧光光谱分析表明,Ca
3
Y
2
Si
3
O
12
:Sm
3+
硅酸盐荧光粉可以在320~500 nm范围内得到有效激发,并发射橙红光。在402 nm激发下,样品发射光谱中的主发射峰分别位于562 nm(
4
G
5/2
6
H
5/2
)、598 nm(
4
G
5/2
6
H
7/2
)和646 nm(
4
G
5/2
6
H
9/2
),其中598 nm处峰值最大。改变Sm
3+
离子掺杂浓度发现:荧光粉发光强度先增大后减小,最佳Sm
3+
掺杂量
x
(Sm
3+
)为5%,浓度猝灭机理为离子间的相互作用。讨论了几种助熔剂的影响,NH
4
F、CaF
2
和NaCl均降低荧光粉的发光强度,只有H
3
BO
3
能够显著增强样品的发光,其最佳掺杂质量分数为1%。
The reddish-orange Ca
3
Y
2-
x
Si
3
O
12
:
x
Sm
3+
phosphors were synthesized by the high temperature solid-state method at
1
400 ℃
and the effects of Sm
3+
ion doping concentration and fluxes on the luminescence property of the phosphors were studied. The principal crystalline phase of the samples is Ca
3
Y
2
Si
3
O
12
. Ca
3
Y
2
Si
3
O
12
:Sm
3+
silicate phosphors can be effectively excited in the range of 320~500 nm
and emit reddish-orange light. Excited by 402 nm
the emission peaks mainly locate at 562 nm (
4
G
5/2
6
H
5/2
)
598 nm (
4
G
5/2
6
H
7/2
)
and 646 nm (
4
G
5/2
6
H
9/2
)
The peak locating at 598 nm is the maximum. With the increasing of the doping concentration of Sm
3+
the emission intensity of the phosphors increases firstly and then decreases. The optimum doping content of Sm
3+
is
x
(Sm
3+
)=5%. The concentration quenching mechanism is the interaction among ions. The influence of several kinds of fluxes was discussed also. The emission intensities all decrease by adding a certain amount of NH
4
F
CaF
2
NaCl
but increase significantly by adding H
3
BO
3
with the optimum doping mass fraction of 1%.
Du N, Huang H Y, Han Z. Luminescent properties of BaMg2(PO4)2:Sm3+ red-emitting phosphor [J]. J. Funct. Mater. Dev.(功能材料与器件学报), 2012, 18(3):209-213 (in Chinese).
Bandi V R, Grandhe B K, Jang K W, et al. Citric based sol-gel synthesis and photoluminescence properties of un-doped and Sm3+ doped Ca3Y2Si3O12 phosphors [J]. Ceram. Inter., 2011, 37(6):2001-2005.
He X H. Synthesis and photoluminescence properties of red-emitting phosphor SrZnO2:Sm3+ by Li+ doping for LED [J]. Rare Mater. Eng.(稀土材料与工程), 2007, 36(9):1574-1577 (in Chinese).
Lin J, Hao Z D, Zhang X, et al. Photoluminescence and energy transfer properties of Ca2SiO4:Ce3+, Sm3+ [J]. Chin. J. Lumin.(发光学报), 2013, 34(8):953-958 (in Chinese).
Jiang Q Y, Li C X, Ye R G, et al. Luminescence and energy transfer Ce3+/Sm3+ co-doped glass and glass ceramics containing Zn2SiO4 nanocrystals for white LEDs [J]. Chin. J. Lumin.(发光学报), 2012, 33(4):371-376 (in Chinese).
Li W Y, Liu Y L, Ai P F, et al. Synthesis and characterization of Y2O2S:Eu3+, Mg2+, Ti4+ nanorods via a solvothermal routine [J]. J. Rare Earths (稀土学报), 2009, 27(6):895-899 (in English).
Lei B F, Liu Y L, Tang G, et al. Concentration dependence of luminescence under different wavelength in Y2O2S:Sm3+ phosphor [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2004, 24(11):1302-1305 (in Chinese).
Zuo M Y, Yang D M, Zhang H, et al. Synthesis of Sr2SiO4:Sm3+ by sol-gel and luminescence characterization [J]. New Chem. Mater.(化工新型材料), 2011, 39(7):43-45 (in Chinese).
Yang Z P, Wang S L, Yang G W, et al. Luminescence properties of Sr2SiO4:Sm3+ red phosphor [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2007, 35(12):1587-1589 (in Chinese).
Yang Z P, Han Y, Song Y C, et al. Preparation and luminescence properties of Ba2-xB2O5:xSm3+ red-emitting phosphor [J]. J. Chin. Ceram. Soc.(硅酸盐学报), 2012, 40(3):469-472 (in Chinese).
Dong G Y, Hou C C, Yang Z P, et al. Synthesis and luminescence properties of a novel red Ca0.5Sr0.5MoO4:Sm3+ phosphor [J]. J. OptoelectronicsLaser (光电子激光), 2014, 25(1):89-95 (in Chinese).
Dexter D L, James H S. Theory of concentration quenching in inorganic phosphors [J]. Chem. Phys., 1954, 22:1063-1070.
Li X J, Liang Y J, Yang F, et al. Effect of fluxes on morphology and luminescent properties of Ba2SiO4:Eu2+ green phosphor [J]. Chin. J. Lumin.(发光学报), 2012, 33(8):817-823 (in Chinese).
Wang L S, Huang K L, Zhou J, et al. Effects of fluxes on synthesis mechanism and emission intensity of BaMgAl10O17:Eu2+ [J]. Chin. Rare Earths (稀土), 2012, 33(1):47-54 (in Chinese).
0
浏览量
95
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构