浏览全部资源
扫码关注微信
1. 长春理工大学 高功率半导体激光国家重点实验室,吉林 长春,130022
2. 中国人民解放军海军工程大学 电子工程学院,湖北 武汉,430033
收稿日期:2013-12-29,
修回日期:2014-02-16,
纸质出版日期:2014-06-03
移动端阅览
陈佳音, 刘国军, 王江安. MIM结构的SPP模式理论与仿真计算研究[J]. 发光学报, 2014,35(6): 737-741
CHEN Jia-yin, LIU Guo-jun, WANG Jiang-an. Analysis of SPP Model Theory and Simulation in MIM Structure[J]. Chinese Journal of Luminescence, 2014,35(6): 737-741
陈佳音, 刘国军, 王江安. MIM结构的SPP模式理论与仿真计算研究[J]. 发光学报, 2014,35(6): 737-741 DOI: 10.3788/fgxb20143506.0737.
CHEN Jia-yin, LIU Guo-jun, WANG Jiang-an. Analysis of SPP Model Theory and Simulation in MIM Structure[J]. Chinese Journal of Luminescence, 2014,35(6): 737-741 DOI: 10.3788/fgxb20143506.0737.
为了进一步明确MIM (Metal-insulator-metal)波导结构的SPP (Surface plasmon polariton)模式特性,建立了MIM结构的SPP模式关系、激发系数和反射系数的理论模型。仿真数值计算结果表明:较大的介质厚度的TM基态模式衰减超过了振荡模式衰减,与传统的介质波导明显不同;TE模式表现为失真的介质光波导模式特性,其传播距离要远大于TM
0
;MIM结构中腔的
Q
值随着长度增加而增大,表明了SPP反射受限;腔的品质因数改变与端面关系密切;MIM波导可以在具有更大
Q
值下确保光波更好地耦合成需要的SPP模式。
In order to further clarify SPP (surface plasmon polariton) mode feature in MIM(metal-insulator-metal)waveguide
we established the theoretical pattern of SPP model relationships in which excitation and reflection coefficients are obtained. A series of results have been derived from numerical simulation. TE mode is similar to dielectric waveguide with distortion
and its propagation distance is much larger than TM
0
.
Q
value in the cavity of MIM structure increases with the length
which indicates a limited reflection of SPP. The change of quality factor in the cavity has close connection with the end face. MIM waveguide ensures better coupling of light into the desired pattern SPP in the condition of greater
Q
value.
Ohtsu M, Kobayashi K, Kawazoe T, et al. Nanophotonics: Design, fabrication and operation of nanometric devices using optical near field [J]. IEEE J. Select. Top. Quant. Elect., 2002, 8(4):839-862.
Ming H, Chen B, Li Q, et al. Latest developments in nanophotonics [J]. Physcial (物理), 2004, 33(9):636-640 (in Chinese).
Barnes W, Dereux A, Ebbesen T. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950):824-854.
Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on in GaN quantum wells [J]. Nat. Mater., 2004, 3(9):601-606.
Maier S, Atwater H. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures [J]. J. Appl. Phys., 2005, 98(10):11101-1-10.
Zir R, Schuller J, Chandran A, et al. Plasmonics: The next chip-scale technology [J]. Materials Today, 2006, 9(7):20-27.
Weeber J, Dereux A, Girad C, et al. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light [J]. Phys. Rev. B, 1999, 60(12):9061-9067.
Plotz G, Simon H, Tucciarone J. Enhanced total reflection with surface plasmons [J]. J. Opt. Soc. Am., 1979, 69(20):419-422.
Seidel J, Grafstrom S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution [J]. Phys. Rev. Lett., 2005, 94(5):177401-1-4.
Noginov M A. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium [J]. Opt. Exp., 2008, 16(10):1385-1392.
De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium [J]. Nat. Photon., 2010, 4:382-387.
Gather M C, Meerholz K, Danz N, et al. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer [J]. Nat. Photon., 2010, 4:457-461.
Polman A. Plasmonics applied [J]. Science, 2008, 322(5903):868-869.
Maziar P, Kevin T, Yeshaiahu F. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides [J]. Opt. Exp., 2004, 12(17):4072-4079.
Chen X, Bhola B, Huang Y, et al. Multi-level multi-thermal-wlectron FDTD simulation of plasmonic interaction with semiconducting gain media: Applications to plasmonic amplifiers and nano-lasers [J]. Opt. Exp., 2010, 18(16):17220-17238.
Babicheva V E, Kulkova I V, Matureanu R, et al. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide [J]. Photonic Nanostruct., 2012, 10(6):389-399.
Protsenko I E, Uskov A V, Zaimidoroga O A, et al. Dipole nanolaser [J]. Phys. Rev. A, 2005, 71(6):063812-1-8.
Jiang X F, Li X L, Cao J F, et al. Stimulated emission property of novel ZnO nanoneedle pumped by two-photon [J]. Chin. J. Lumin.(发光学报), 2010, 31(1):109-110 (in Chinese).
Chau Y F, Tsai D P, Hu G W, et al. Subwavelength optical imaging throught a silver nanorod [J]. Opt. Eng., 2007, 46(3):039701-1-4.
Xiao X X, Chen Y G. Investigation of optical wave coupling between two subwavelengh slits in metallic sheet [J]. Chin. J. Lumin.(发光学报), 2009, 30(5):682-686 (in Chinese).
0
浏览量
386
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构