浏览全部资源
扫码关注微信
南京邮电大学 光电工程学院,江苏 南京,210023
收稿日期:2014-02-18,
修回日期:2014-03-22,
纸质出版日期:2014-06-03
移动端阅览
陈云龙, 郑加金, 蒋宇宏. 镀膜法改善有机薄膜太阳能电池光学性能[J]. 发光学报, 2014,35(6): 710-716
CHEN Yun-long, ZHENG Jia-jin, JIANG Yu-hong. Optical Performance Improving of Organic Film Solar Cell by Multiple Surface Coating[J]. Chinese Journal of Luminescence, 2014,35(6): 710-716
陈云龙, 郑加金, 蒋宇宏. 镀膜法改善有机薄膜太阳能电池光学性能[J]. 发光学报, 2014,35(6): 710-716 DOI: 10.3788/fgxb20143506.0710.
CHEN Yun-long, ZHENG Jia-jin, JIANG Yu-hong. Optical Performance Improving of Organic Film Solar Cell by Multiple Surface Coating[J]. Chinese Journal of Luminescence, 2014,35(6): 710-716 DOI: 10.3788/fgxb20143506.0710.
有机活性材料的低载流子迁移率使得有机光伏电池的电极收集到的电荷较少。增加活性层光吸收能够增加激子的产生数从而增加电极收集到的电荷,提升器件的性能。通过对器件模拟的方法,研究以P3HT:PCBM为活性层的薄膜太阳能电池的光学性能。 在此基础上,提出采用镀多层高反射膜的方法改善电池器件的光学性能。结果表明:活性层厚度对电池器件的光吸收起到主导作用;镀多层高反射膜在活性层厚度小于160 nm、Ag厚度小于20 nm时能大幅度改善电池器件的光学性能,光生激子总数随活性层厚度的增加而迅速增多,并且在活性层厚度约为150 nm时为一个最佳值。
Low carrier mobility of organic materials limits the number of carriers extracted by electrodes. By increasing light absorption in the active layer
more excitons could be produced so as to increase current which extracted by electrodes. And the performance would be improved by this way. Photoelectric field distribution and excitons generated in P3HT:PCBM active layer were studied by the numerical modeling method. Based on it
the method of coating multilayer high reflectance films behind the cathode was proposed. Simulations reveal that the thickness of active layer plays a leading role in optical absorption. When the thickness of active layer is less than 160 nm and the thickness of Ag is less than 20 nm
coating multilayer high reflectance films could improve the optical performance of solar cells largely. Excitons increase fast with the thickness of active layer
and the number of excitons reaches an optimal value when the thickness of active layer is about 150 nm.
Mi B X, Gao Z Q, Huang W, et al. Recent progress of organic solar cell materials and devices [J]. Sci. China Ser. B: Chem.(中国科学 B辑:化学), 2008, 38(11):957-975 (in Chinese).
Coakley K M, McGehee M D. Conjugated polymer photovoltaic cells [J]. Chem. Mater., 2004, 16(23):4533-4542.
Kotlarski J D, Blom P W M, Koster L, et al. Combined optical and electrical modeling of polymer: Fullerene bulk heterojunction solar cells [J]. J. Appl. Phys., 2008, 103(8):084502-1-5.
Roy A, Park S H, Cowan S, et al. Titanium suboxide as an optical spacer in polymer solar cells [J]. Appl. Phys. Lett., 2009, 95:013302.
Kim C, Kim J. Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells [J]. Opt. Exp., 2008, 16(24):19987-19994.
Agrawal M, Peumans P. Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells [J]. Opt. Exp., 2008, 16(8):5385-5396.
Tvingstedt K, Persson N K, Inganas O, et al. Surface plasmon increase absorption in polymer photovoltaic cells[J]. Appl. Phys. Lett., 2007, 91(11):113514-1-3.
Ko D H, Tumbleston J R, Zhang L, et al. Photonic crystal geometry for organic solar cells [J]. Nano Lett., 2009, 9(7):2742-2746.
Heavens O S. Optical Properties of Thin Solid Films [M]. USA: Courier Dover Publications, 1991.
Pettersson L A A, Roman L S, Inganas O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films [J]. J. Appl. Phys., 1999, 86(1):487-496.
Hoppe H, Arnold N, Sariciftci N S, et al. Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells [J]. Sol. Energ. Mat. Sol. C, 2003, 80(1):105-113.
Sievers D W, Shrotriya V, Yang Y. Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells [J]. J. Appl. Phys., 2006, 100(11):114509-1-7.
Ameri T, Dennler G, Waldauf C, et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure [J]. Adv. Funct. Mater., 2010, 20(10):1592-1598.
Zhang J L, Li J, Liu J C. Research progress of PEDOT:PSS film in organic photovoltaic field [J]. Mater. Rev.(材料导报), 2010, 19:136-142 (in Chinese).
Dennler G, Forberich K, Scharber M C, et al. Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells [J]. J. Appl. Phys., 2007, 102(5):054516-1-7.
Lee Y J, Nichols W T, Kim D G, et al. Chemical vapour transport synthesis and optical characterization of MoO3 thin films [J]. J. Phys. D: Appl. Phys., 2009, 42(11):115419.
Tumbleston J R, Ko D H, Samulski E T, et al. Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer [J]. Appl. Phys. Lett., 2009, 94(4):043305-1-3.
Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated by all-solution processing [J]. Science, 2007, 317(5835):222-225.
Brandon B. PECVD Grown DBR for Microcavity OLED Sensor. Iowa State: Iowa State University, 2007.
Shi S X, Wang X E, Liu J S. Physical Optics & Applied Optics [M]. Xi'an: Electronic Science & Technology University Press, 2008:79-80 (in Chinese).
0
浏览量
175
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构