浏览全部资源
扫码关注微信
1. 江苏大学江苏省重点实验室光子制造科学与技术中心,江苏 镇江,212013
2. 东南大学生物电子学国家重点实验室,江苏 南京,210096
收稿日期:2014-03-18,
修回日期:2014-04-15,
网络出版日期:2014-04-30,
纸质出版日期:2014-06-03
移动端阅览
吴春霞, 张双鸽, 何自娟等. 紫外发光增强的石墨烯-氧化锌纳米复合物[J]. 发光学报, 2014,35(6): 701-705
WU Chun-xia, ZHANG Shuang-ge, HE Zi-juan etc. Enhanced Ultraviolet Photoluminescence of Graphene-ZnO Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(6): 701-705
吴春霞, 张双鸽, 何自娟等. 紫外发光增强的石墨烯-氧化锌纳米复合物[J]. 发光学报, 2014,35(6): 701-705 DOI: 10.3788/fgxb20143506.0701.
WU Chun-xia, ZHANG Shuang-ge, HE Zi-juan etc. Enhanced Ultraviolet Photoluminescence of Graphene-ZnO Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(6): 701-705 DOI: 10.3788/fgxb20143506.0701.
采用溶剂热法在相同条件下分别制备了纯ZnO和石墨烯-氧化锌纳米复合物,通过SEM、TEM、拉曼和红外光谱等手段,对纳米复合物样品进行了形貌和结构表征。实验结果显示ZnO纳米颗粒成功地分散在少层石墨烯上。通过对比纯ZnO与复合物的形貌和光致发光谱,发现在没有石墨烯时,ZnO能够择优取向生长成六方棱柱,紫外发光峰弱且宽;在有石墨烯时,ZnO聚集成表面不规则的球形颗粒,紫外发光峰强且窄。上述结果表明ZnO形貌的变化和石墨烯的等离子体效应共同影响了ZnO的紫外发光,但石墨烯的表面等离子体效应起主导作用。
Graphene-ZnO nanocomposites and pure ZnO samples were prepared by solvothermal method under the same conditions. The morphology and structure of nanocomposites were characterized by SEM
TEM
Raman and infrared spectroscopy. The results show that ZnO nanoparticles have dispersed on a few layers graphene. Compared with the morphology of graphene-ZnO nanocomposites
it is found that pure ZnO can grow into a preferred orientation of hexagonal structure
while ZnO aggregates into sphere in the presence of graphene which is attributed to the graphene hindered the preferred orientation of ZnO growth. From the PL spectra
the ultraviolet emission peak intensity of graphene-ZnO is stronger than that of pure ZnO
and accompanied by blue shift phenomenon. The difference of ultraviolet photoluminescence between ZnO and graphene-ZnO comes from the difference of morphology and the plasma effect of grapheme
while the plasma effect of graphene plays a key role.
Su S C, Lv Y M, Zhang J Y, et al. Sbustrates temperature influence on the structural and optical properties of ZnO films [J]. J. Lumin., 2011, 32(7):736-739.
Pan Y W. Synthesis and photoluminescence properties of zinc oxide nanostructures [J]. J. Lumin., 2013, 34(8):994-999.
Deenathayalan J, Saroja M, Venkatachalam M, et al. Optical and structural properties of ZnO nanorods prepared by chemical bath deposition method [J]. Adv. Mater. Res., 2013, 678:207-211.
Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065):197-200.
Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene [J]. Rev. Modern Phys., 2009, 81(1):109-1-24.
Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials [J]. Nature, 2006, 442(7100):282-286.
Yi J, Lee J M, Park W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors [J]. Sens. Actuat. B: Chem., 2011, 155(1):264-269.
Yang Y, Ren L, Zhang C, et al. Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property [J]. ACS Appl. Mater. Interf., 2011, 3(7):2779-2785.
Liu X, Pan L, Zhao Q, et al. UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr (Ⅵ) [J]. Chem. Eng. J., 2012, 183:238-243.
Zheng W T, Ho Y M, Tian H W, et al. Field emission from a composite of graphene sheets and ZnO nanowires [J]. J. Phys. Chem. C, 2009, 113(21):9164-9168.
Hwang J O, Lee D H, Kim J Y, et al. Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission [J]. J. Mater. Chem., 2011, 21(10):3432-3437.
Yang Y, Liu T. Fabrication and characterization of graphene oxide/zinc oxide nanorods hybrid [J]. Appl. Surf. Sci., 2011, 257(21):8950-8954.
Liu R, Fu X W, Meng J, et al. Graphene plasmon enhanced photoluminescence in ZnO microwires [J]. Nanoscale, 2013, 5(12):5294-5298.
Hwang S W, Shin D H, Kim C O, et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films [J]. Phys. Rev. Lett., 2010, 105(12):127403-1-4.
Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80(6):1339-1339.
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett., 2006, 97(18):187401-1-4.
Fu Z D, Cui Y S, Zhang S Y, et al. Study on the quantum confinement effect on ultraviolet photoluminescence of crystalline ZnO nanoparticles with nearly uniform size [J]. Appl. Phys. Lett., 2007, 90(26):263113-1-3.
Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors [J]. Phys. Rev. B, 1992, 45(16):8989-8994.
0
浏览量
167
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构