浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
3. 东北师范大学先进光电子功能材料研究中心,吉林 长春,130024
收稿日期:2014-03-03,
修回日期:2014-04-14,
纸质出版日期:2014-06-03
移动端阅览
郑剑, 张振中, 张吉英等. <em>m</em>面蓝宝石上外延(110)取向立方MgZnO薄膜及其日盲紫外探测器件研究[J]. 发光学报, 2014,35(6): 678-683
ZHENG Jian, ZHANG Zhen-zhong, ZHANG Ji-ying etc. Epitaxial (110)-oriented Cubic MgZnO Films on <em>m</em>-plane Sapphire for Solar-blind UV Photodetectors[J]. Chinese Journal of Luminescence, 2014,35(6): 678-683
郑剑, 张振中, 张吉英等. <em>m</em>面蓝宝石上外延(110)取向立方MgZnO薄膜及其日盲紫外探测器件研究[J]. 发光学报, 2014,35(6): 678-683 DOI: 10.3788/fgxb20143506.0678.
ZHENG Jian, ZHANG Zhen-zhong, ZHANG Ji-ying etc. Epitaxial (110)-oriented Cubic MgZnO Films on <em>m</em>-plane Sapphire for Solar-blind UV Photodetectors[J]. Chinese Journal of Luminescence, 2014,35(6): 678-683 DOI: 10.3788/fgxb20143506.0678.
由于在日盲紫外探测方面的应用前景,具有合适带隙的MgZnO合金半导体薄膜受到越来越多的关注。获得具有择优取向的单一相MgZnO对提升MgZnO基日盲紫外探测器性能至关重要。本文利用低压金属有机化学气相沉积(LP-MOCVD)方法在
m
面蓝宝石衬底上制备了一系列不同组分的Mg
x
Zn
1-
x
O薄膜。光学和结构特性测试结果表明:Zn摩尔分数达到55%的Mg
0.45
Zn
0.55
O薄膜依然是单一立方相,其光学带隙可以达到4.7 eV。立方岩盐结构MgZnO与
m
面蓝宝石衬底的外延结构关系为(110)
MgZnO
‖(10
1
0)
sapphire
、[001]
MgZnO
‖[1
2
10]
sapphire
和[
1
10]
MgZnO
‖[0001]
sapphire
。唯一确定的面内取向有利于薄膜晶体质量的提高。基于(110)取向立方相Mg
0.45
Zn
0.55
O薄膜制备金属-半导体-金属(MSM)结构器件,获得了光响应峰在260 nm、光响应截止波长278 nm的日盲紫外探测器。
A series of Mg
x
Zn
1-
x
O alloy films were grown on
m
-plane sapphire by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). Optical and structural characterizations indicated that the films with Zn mole fraction up to 55% are single-cubic-phased
and the optical bandgap of Mg
0.45
Zn
0.55
O film is 4.7 eV. The epitaxial [JP2]relationships between substrate and rocksalt MgZnO layers were determined as (110)
MgznO
‖(10
1
0)
sapphire
[001]
MgZnO
‖[1
2
10]
sapphire
and [
1
10]
MgZnO
‖[0001]
sapphire
. The fixed uniform orientation of the films was accompanied by an improvement in crystal quality. A metal-semiconductor-metal structured solar-blind ultraviolet detector fabricated on Mg
0.45
Zn
0.55
O film showed a response peak at 260 nm and a sharp cutoff at 278 nm.
Schreiber P, Dang T, Pickenpaugh T, et al. Solar-blind UV region and UV detector development objectives [J]. SPIE, 1999, 3629:230-248.
Shaw G A, Siegel A M, Model J, et al. Recent progress in short-range ultraviolet communication [J]. SPIE, 2005, 5796:214-225.
Tanaka H S, Fujita S G, Fujita S Z, et al. Fabrication of wide-band-gap MgxZn1-xO quasi-ternary alloys by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 86(19):192911-1-3.
Du X L, Mei Z X, Liu Z L, et al. Controlled growth of high-quality ZnO-based films and fabrication of visible-blind and solar-blind ultra-violet detectors [J]. Adv. Mater., 2009, 21(45):4625-4630.
Zheng Q H, Huang F, Ding K, et al. MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates [J]. Appl. Phys. Lett., 2011, 98(22):221112-1-3.
Segnit E R, Holland A E. The system MgO-ZnO-SiO2 [J]. J. Am. Ceram. Soc., 1965, 48(8):409-413.
Raghavan S, Hajra J P, Iyengar G N K, et al. Terminal solid solubilities at 900-1 000℃ in the magnesium oxide-zinc oxide system measured using a magnesium fluoride solid-electrolyte galvanic cell [J]. Thermochim. Acta, 1991, 189(1):151-158.
Choopun S, Vispute R D, Yang W, et al. Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J]. Appl. Phys. Lett., 2002, 80(9):1529-1531.
Ju Z G, Shan C X, Jiang D Y, et al. MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range [J]. Appl. Phys. Lett., 2008, 93(17):173505-1-3.
Wang L K, Ju Z G, Zhang J Y, et al. Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices [J]. Appl. Phys. Lett., 2009, 95(13):131113-1-3.
Han S, Zhang Z Z, Zhang J Y, et al. Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film [J]. Appl. Phys. Lett., 2011, 99(24):242105-1-3.
Ziga-Prez J, Muoz-Sanjos V, Palacios-Lidn E, et al. Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films [J]. Appl. Phys. Lett., 2006, 88(26):261912-1-3.
Ku C S, Lee H Y, Huang J M, et al. Epitaxial growth of m-plane ZnO thin films on (101[TX-]0) sapphire substrate by atomic layer deposition with interrupted flow [J]. Cryst. Growth Des., 2010, 10(4):1460-1463.
Bates C H, White W B, Roy R, et al. New high-pressure polymorph of zinc oxide [J]. Science, 1962, 137(3534): 993-993.
Bendersky L A, Takeuchi I, Chang K S, et al. Microstructural study of epitaxial MgxZn1-xO composition spreads [J]. J. Appl. Phys., 2005, 98(8):083526-1-6.
Vashaei Z, Minegishi T, Suzuki H, et al. Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire [J]. J. Appl. Phys., 2005, 98(5):054911-1-4.
Ziga-Prez J, Martnez-Toms C, Muoz-Sanjos V, et al. Faceting and structural anisotropy of nanopatterned CdO(110) layers [J]. J. Appl. Phys., 2005, 98(3):034311-1-6.
0
浏览量
68
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构