浏览全部资源
扫码关注微信
1. 西北大学 物理学院,陕西 西安,710069
2. 西安理工大学 材料科学与工程学院,陕西 西安,710048
收稿日期:2014-01-13,
修回日期:2014-02-14,
纸质出版日期:2014-06-03
移动端阅览
焦杨, 徐旭, 周晨露等. 纳米结构ZnO薄膜的制备及其疏水特性[J]. 发光学报, 2014,35(6): 654-659
JIAO Yang, XU Xu, ZHOU Chen-lu etc. Preparation of Diverse Nanostructured ZnO Films and Their Hydrophobic Properties[J]. Chinese Journal of Luminescence, 2014,35(6): 654-659
焦杨, 徐旭, 周晨露等. 纳米结构ZnO薄膜的制备及其疏水特性[J]. 发光学报, 2014,35(6): 654-659 DOI: 10.3788/fgxb20143506.0654.
JIAO Yang, XU Xu, ZHOU Chen-lu etc. Preparation of Diverse Nanostructured ZnO Films and Their Hydrophobic Properties[J]. Chinese Journal of Luminescence, 2014,35(6): 654-659 DOI: 10.3788/fgxb20143506.0654.
利用水热法制备出与透明导电衬底附着良好的多种纳米结构ZnO薄膜,包括纳米柱阵列、纳米管阵列、纳米片阵列等,方便集成在多种器件上。并且实现了阵列中纳米柱、纳米管外径的调节,柱外径在50~300 nm范围内可调,管外径在300~1 000 nm范围内可调。几种纳米薄膜均显示出较强的疏水性。在未经任何低表面能物质修饰的情况下,水在外径约300 nm的管状阵列表面的静态接触角已达138。而在紫外光照射下,这些疏水的ZnO薄膜还可以变得亲水。这些研究结果为ZnO纳米阵列在相关方面的应用提供了重要依据。
ZnO films with diverse nanostructures
including nanorod array
nanotube array
and nanosheet array were prepared. Diameter of the nanorods and nanotubes can be tuned from 50 nm to 300 nm
and from 300 nm to 1 m
respectively. All the ZnO nanofilms are hydrophobic. The largest contact angle 138 can be achieved without any surface modification. Moreover
the hydrophobic ZnO surface turns to hydrophilic under ultraviolet irradiation. These results provide an important basis for applying ZnO nano-arrays in the relevant aspects.
Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures [J]. Sci. Technol. Adv. Mater., 2009, 10(1):013001-1-18.
Oba F, Choi M, Togo A, et al. Point defects in ZnO: An approach from first principles [J]. Sci. Technol. Adv. Mater., 2011, 12(3):034302-1-14.
Li C Q, Luo L T, Xiong G W. Study of the preparation and photocatalysis performance of CeO2/ZnO mixed nanometer tubes [J]. Acta Chim. Sinica (化学学报), 2010, 68(10):1023-1026 (in Chinese).
Zhai Y J, Li J H, Chen X Y, et al. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity [J]. Chin. Opt.(中国光学), 2014, 7(1):124-130 (in Chinese).
Khranovskyy V, Ekblad T, Yakimova R, et al. Surface morphology effects on the light-controlled wettability of ZnO nanostructures [J]. Appl. Surf. Sci., 2012, 258(20):8146-8152.
Kumar P S, Raj A D, Mangalaraj D, et al. Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior [J]. Appl. Surf. Sci., 2011, 257(15):6678-6686.
Gong M G, Xu X L, Yang Z, et al. Structure, photoluminescence and wettability properties of well arrayed ZnO nanowires grown by hydrothermal method [J]. J. Nanosci. Nanotechnol., 2010, 10(11):7762-7765.
Yao L, Zheng M, Ma L, et al. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays [J]. Nanoscale Res. Lett., 2011, 6(1):74-1-8.
Liang Z W, Cui H, Wang K, et al. Morphology-controllable ZnO nanotubes and nanowires: Synthesis, growth mechanism and hydrophobic property [J]. Cryst. Eng. Commun., 2012, 14(5):1723-1728.
Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds [J]. Nano Lett., 2005, 5(7):1231-1236.
Sugunan A, Warad H C, Boman M, et al. Zinc oxide nanowires in chemical bath on seeded substrates: Role of hexamine [J]. J. Sol-Gel. Sci. Technol., 2006, 39:49-56.
Wang Y W, Cui Z L. Synthesis and photoluminescence of well aligned ZnO nanotube arrays by a simple chemical solution method [J]. J. Phys.: Conf. Ser., 2009, 152(1):012021-1-5.
Wei A, Sun X W, Xu C X, et al. Stable filed emission from hydrothermally grown ZnO nanotubes [J]. Appl. Phys. Lett., 2006, 88(21):213102-1-3.
0
浏览量
187
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构