浏览全部资源
扫码关注微信
哈尔滨师范大学 物理与电子工程学院,黑龙江 哈尔滨,150025
收稿日期:2013-12-31,
修回日期:2014-01-23,
网络出版日期:2014-03-07,
纸质出版日期:2014-05-03
移动端阅览
顾海佳, 唐欣月, 杨守斌. 单根ZnO纳米线低温条件下的电子输运及光敏性质[J]. 发光学报, 2014,35(5): 600-603
GU Hai-jia, TANG Xin-yue, YANG Shou-bin. Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures[J]. Chinese Journal of Luminescence, 2014,35(5): 600-603
顾海佳, 唐欣月, 杨守斌. 单根ZnO纳米线低温条件下的电子输运及光敏性质[J]. 发光学报, 2014,35(5): 600-603 DOI: 10.3788/fgxb20143505.0600.
GU Hai-jia, TANG Xin-yue, YANG Shou-bin. Electrical Properties and Photosensitivity of Single ZnO Nanowire at Low Temperatures[J]. Chinese Journal of Luminescence, 2014,35(5): 600-603 DOI: 10.3788/fgxb20143505.0600.
用化学气相沉积的方法合成了ZnO纳米线,采用微栅模板法制得电极从而获得欧姆接触的单根ZnO纳米线半导体器件。通过研究60~300 K范围内的电阻变化情况,发现在整个温度区间内存在热激活和近程跳跃两种传输机制。在300,200,100 K的条件下分别测试了器件的紫外光响应和恢复情况,结果表明:低温下器件对紫外光的敏感性提高,电流的恢复时间随着温度的降低而延长。
ZnO nanowires were synthesized by chemical vapor deposition method
and single ZnO nanowire semiconductor devices with Ohmic contact electrodes were fabricated using the micro grid template method. The electrical properties of the device were investigated at low temperatures. The results show that there are two types of transport mechanism: thermal activation and nearest-neighbor hopping mechanism from 300 to 60 K. The properties of ultraviolet light response and recovery of the device were tested at 300
200
and 100 K
respectively. The results show that the sensitivity of the device to ultraviolet is improved at low temperature
and the current recovery time increases with the temperature falling down.
Pearton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO[J].Superlatt. Microstruct., 2003, 34(1-2):3-32.[2] Ozgür U, Alivov Ya I, Liu C, et al. A comprehensive review of ZnO materials and devices[J].J. Appl. Phys. Lett., 2005, 98(4):041301-1-3.[3] Klingshirn C. ZnO: From basics towards applications[J].Phys, Stat. Sol. (b), 2007, 244(9):3027-3073.[4] Kind H, Yan H, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches[J].Adv. Mater., 2002, 14(2):158-160.[5] Fan Z, Lu J G. Gate-refreshable nanowire chemical sensors[J].Appl. Phys. Lett., 2005, 86(12):123510-1-3.[6] Park W I, Kim J S, Yi G C, et al. Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors[J].Appl. Phys. Lett., 2004, 85(21):5052-5054.[7] Ju S, Lee K, Janes D B, et al. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics[J].Nano Lett., 2005, 5(11):2281-2286.[8] Chang P C, Lu J G. ZnO nanowire field-effect transistors[J].IEEE Trans. Elect., 2008, 55(11):2977-2987.[9] Heo Y W, Tien L C, Norton D P, et al. Pt/ZnO nanowire schottky diodes[J].Appl. Phys. Lett., 2004, 85(15): 3107-3109.[10] Lao C S, Liu J, Gao P. ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes[J].Nano Lett., 2006, 6(2):263-266.[11] Walukiewicz W, Shan W, Yu K M, et al. Interaction of localized electronic states with the conduction band: Band anticrossing in Ⅱ-Ⅳ semiconductor ternaries[J].Phys. Rev. Lett., 2000, 85(7):1552-1555.[12] Shafigh M, Veaceslav C, Jean-Luc B. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge mode[J].Phys. Rev. B, 2010, 12:10928-10932.[13] Lang Y, Gao H, Jiang W, et al. Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor[J].Sens. Actuat. A, 2012, 174:43-46.[14] Jiang W, Gao H, Xu L L, et al. Fabrication and electrical characteristics of individual ZnO submicron-wire field-effect transistor[J].Chin. Phys. Lett., 2012, 29(3):7102-1-3 (in English).[15] Lin Y F, Jian W B. The impact of nanocontact on nanowire based nanoelectronics[J].Nano Lett., 2008, 8(10):3146-3150.[16] Long Y Z, Duvail J L, Chen Z J, et al. Electrical conductivity and current-voltage characteristics of individual conducting polymer PEDOT nanowires[J].Chin. Phys. Lett., 2008, 25(9):3474-3477 (in English).[17] Kumar R, Khare N. Temperature dependence of conduction mechanism of ZnO and co-doped ZnO thin films[J].Thin Solid Films, 2008, 516(6):1302-1307.[18] Lin Y F, Jian W B. Contact to ZnO and intrinsic resistances of individual ZnO nanowires with a circular cross section[J].Appl. Phys. Lett., 2007, 90(22):223117-1-3.[19] Huang J H, Zhang K, Pan N, et al. Surface modification ZnO nanowires ultraviolet response enhancement effect[J].Chin. Phys. Lett., 2008, 57(12):7855-7859 (in Chinese).
0
浏览量
185
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构