浏览全部资源
扫码关注微信
1. 太原理工大学 物理与光电工程学院,山西 太原,030024
2. 太原理工大学 新型传感器与智能控制教育部与山西省重点实验室,山西 太原,030024
收稿日期:2013-12-24,
修回日期:2014-01-22,
纸质出版日期:2014-05-03
移动端阅览
王磊, 董杰, 黄平等. 碱土金属离子对红色长余辉材料Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg,Ca,Sr,Ba),Ti<sup>4+</sup>纳米阵列发光性能的影响[J]. 发光学报, 2014,35(5): 553-557
WANG Lei, DONG Jie, HUANG Ping etc. Influence of Alkaline-earth Metal Ions on The Luminescence Properties of Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg, Ca, Sr, Ba),Ti<sup>4+</sup> Nanotube Arrays[J]. Chinese Journal of Luminescence, 2014,35(5): 553-557
王磊, 董杰, 黄平等. 碱土金属离子对红色长余辉材料Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg,Ca,Sr,Ba),Ti<sup>4+</sup>纳米阵列发光性能的影响[J]. 发光学报, 2014,35(5): 553-557 DOI: 10.3788/fgxb20143505.0553.
WANG Lei, DONG Jie, HUANG Ping etc. Influence of Alkaline-earth Metal Ions on The Luminescence Properties of Y<sub>2</sub>O<sub>2</sub>S:Eu<sup>3+</sup>, <em>M</em><sup>2+</sup>(<em>M</em>=Mg, Ca, Sr, Ba),Ti<sup>4+</sup> Nanotube Arrays[J]. Chinese Journal of Luminescence, 2014,35(5): 553-557 DOI: 10.3788/fgxb20143505.0553.
采用溶胶凝胶模板法制备红色长余辉发光材料Y
2
O
2
S:Eu
3+
,
M
2+
(
M
=Mg,Ca,Sr,Ba),Ti
4+
纳米阵列,利用X射线衍射、扫描电子显微镜和荧光分光光度计、照度计分别研究了不同二价离子掺杂下所合成样品的物相、形貌及发光性能。结果表明:样品排列整齐有序,管径大小统一;不同的二价离子种类没有改变晶体结构和发射峰的位置,但对余辉性能有较大的影响。用324 nm波长光激发样品,由于Eu
3+
的
5
D
0
7
F
2
跃迁,最强的红色发射峰位于626 nm处;不同离子掺杂样品的余辉性能按Ba
2+
、Ca
2+
、Sr
2+
、Mg
2+
的顺序递加,其中二价离子为Mg
2+
时,余辉时间长达287 s(1 mcd/m
2
),表现出最佳的余辉性能。
Red long-lasting phosphor Y
2
O
2
S:Eu
3+
M
2+
(
M
=Mg
Ca
Sr
Ba)
Ti
4+
nanoarrays were synthetized by sol-gel template method. The nanoarrays were characterized by powder X-ray diffraction (XRD)
scanning electron microscopy (SEM)
and photoluminescence (PL). The results show that Y
2
O
2
S:Eu
3+
Mg
2+
Ti
4+
nanotube arrays are highly ordered
regularly arranged and uniform. The doping ions do not change the crystal structure and the situation of emission peaks of phosphors
but have influence on the luminescence properties. Under 324 nm excitation
the strongest red-emission peaks at 626 nm assigned to
5
D
0
7
F
2
transition of Eu
3+
. The afterglow properties of phosphors doped with different divalent ions increase according to the order of Ba
2+
Ca
2+
Sr
2+
Mg
2+
. For the sample doped with Mg
2+
the decay time can last over 287 s (1 mcd/m
2
).
Wen Z H, Ci S Q, Mao S, et al. TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells[J].J. Power Sources, 2013, 234:100-106.[2] Chen H Y, Weng M H, Chang S J, et al. Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties[J].Ceram. Int., 2012, 38(1):125-130.[3] Cheng B C, Liu H J, Fang M, et al. Long-persistent phosphorescent SrAl2O4:Eu2+, Dy3+ nanotubes[J].Chem. Commun., 2009, 8:944-946.[4] Bockrath M, Liang W J, Bozovic D, et al. Resonant electron scattering by defects in single-walled carbon nanotubes[J].Science, 2001, 291(5502):283-285.[5] WangL X, Zhang L, Huang Y D, et al. Effects of Gd3+ and Lu3+ co-doping on the long afterglow properties of yellowish-orange phosphor Y2O2S:Ti4+, Mg2+[J].J. Lumin., 2009, 129(9):1032-1035.[6] Huang M L, Guo K, Man Z Y, et al. Morphology controllable synthesis of yttrium oxide-based phosphors from yttrium citrate precursors[J].J. Rare Earths, 2011, 29(9):830-836.[7] Grobelna B, Synak A, Bojarski P, et al. Synthesis and luminescence characteristics of Dy3+ ions in silica xerogels doped with Ln2-xDyx(WO4)3[J].Opt. Mater., 2013, 35(3):456-461.[8] Ogata H, Takeshita S, Isobe T, et al. Factors for determining photoluminescence properties of YBO3:Ce3+ phosphor prepared by hydrothermal method[J].Opt. Mater., 2011, 33(11):1820-1824.[9] Tan W M, Di Z G, Lu C H, et al. SiO2:Sm3+ micro-nano arrays prepared by sol-gel and template process[J].Chin. J. Inorg. Chem.(无机化学学报), 2010, 26(11):1949-1954(in Chinese).[10] Yan X C, Yu R B, Wang D, et al. Facile solvothermal synthesis of gear-shaped submicrostructured Y2O3:Eu3+ phosphor[J].Solid State Sci., 2011, 13(5):1060-1064.[11] Wang X X, Zhao J L, Du P, et al. The photoluminescence properties of Er3+-doped ZrO2 nanotube arrays prepared by anodization[J].Mater. Res. Bull., 2012, 47(11):3916-3919.[12] Zhao S H, Wang L L, Yang L, et al. Synthesis and luminescence properties of ZnO:Tb3+ nanotube arrays via electrodeposited method[J].Phys. B, 2010, 405(15):3200-3204.[13] Mao Y B, Huang J Y, Ostroumov R, et al. Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes[J].J. Phys. Chem. C, 2008, 112(7):2278-2285.[14] Lin T, Kellici S, Gong K, et al. Rapid automated materials synthesis instrument: Exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors[J].J. Comb. Chem., 2010, 12(3):383-392.[15] Jia G, Liu K, Zheng Y H, et al. highly uniform Gd(OH)3 and Gd2O3:Eu3+ nanotubes: Facile synthesis and luminescence properties[J].J. Phys. Chem. C, 2009, 113(15):6050-6055.[16] Mao S P, Liu Q, Gu M, et al. Long lasting phosphorescence of Gd2O2S:Eu, Ti, Mg nanorods via a hydrothermal routine[J].J. Alloys Compd., 2008, 465:367-374.[17] Huang Y Z, Chen L, Wu L M. Crystalline nanowires of Ln2O2S, Ln2O2S2, LnS2 (Ln=La, Nd), and La2O2S:Eu3+. Conversions via the boron-sulfur method that preserve shape[J].Cryst. Growth Des., 2008, 8(2):739-743.[18] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires[J].Angew. Chem. Int. Ed., 2001, 41(24):4790-4793.[19] Cui C E, Lei X, Huang P, et al. Influence of sulfuretted temperature on the luminescent properties of Y2O2S:Eu3+, Mg2+, Ti4+ nanoarrays[J].J. Lumin., 2013, 138:138-142.[20] Cui C E, Liu H, Huang P, et al. Influence of Eu3+ doping concentration on the luminescence properties of Y2O2S:Eu3+, Mg2+, Ti4+ nanoarrays via sol-gel template method[J].Opt. Mater., 2013, 36(2):495-499.[21] Hls J, Laamanen T, Lastusaari M, et al. Effect of Mg2+ and TiIV doping on the luminescence of Y2O2S:Eu3+[J].Opt. Mater., 2009, 31(12):1791-1793.
0
浏览量
33
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构