浏览全部资源
扫码关注微信
1. 吉林大学 物理学院,吉林 长春,130021
2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
3. 中国科学院大学 北京,100049
收稿日期:2013-12-25,
修回日期:2014-02-24,
网络出版日期:2014-03-07,
纸质出版日期:2014-05-03
移动端阅览
赵鹏程, 张振中, 姚斌等. 低温外延生长平整ZnO薄膜[J]. 发光学报, 2014,35(5): 542-547
ZHAO Peng-cheng, ZHANG Zhen-zhong, YAO Bin etc. Smooth Surface Morphology of ZnO Thin Films on Sapphire at Low Temperature[J]. Chinese Journal of Luminescence, 2014,35(5): 542-547
赵鹏程, 张振中, 姚斌等. 低温外延生长平整ZnO薄膜[J]. 发光学报, 2014,35(5): 542-547 DOI: 10.3788/fgxb20143505.0542.
ZHAO Peng-cheng, ZHANG Zhen-zhong, YAO Bin etc. Smooth Surface Morphology of ZnO Thin Films on Sapphire at Low Temperature[J]. Chinese Journal of Luminescence, 2014,35(5): 542-547 DOI: 10.3788/fgxb20143505.0542.
在较低温度下实现平整ZnO薄膜的生长有利于ZnO的可控p型掺杂以及获得陡峭异质界面。本文使用分子束外延方法,采用
a
面蓝宝石为衬底,在450 ℃下生长了一系列ZnO薄膜样品。在富氧生长的条件下,固定氧流量不变,通过调节锌源温度来改变锌束流,以此调控生长速率。样品的生长速率为40~100 nm/h。通过扫描电镜(SEM)表征发现:在高锌束流的生长条件下,样品表面有很多不规则的颗粒;降低锌的供应量后,样品表面逐渐平整。原子力显微镜(AFM)测试结果表明:样品的均方根表面粗糙度(RMS)只有0.238 nm,接近于原子级平整度。这种平整表面的获得得益于较低的生长速率,以及ZnO外延薄膜与
a
面蓝宝石衬底之间小的晶格失配。
ZnO thin film that grows at low temperature benefits the sharp interface in heterostructure and enough doping level of acceptor in ZnO. In general
the smooth growth can be easily obtained at temperature higher than 600 ℃
but difficult in the case of low growth temperature. In this work
by controlling the growth ambient and growth rate
a series of ZnO thin films with smooth surface were grown on
a
-plane sapphire substrates at 450 ℃ by the plasma-assisted molecular beam epitaxy (P-MBE). The growth was performed in oxygen-rich atmosphere. To tune the growth rate
the zinc flux was changed by varying the K-cell temperature of zinc source (
T
k
) while keeping oxygen flux constant. The growth rate of the samples is only 40~100 nm/h. Scanning electron microscopy (SEM) images indicate that there are lots of irregular grains on the thin film surface at high zinc flux
and most of the grains disappear gradually from the surface with the zinc flux decreasing. This smooth growth with low growth rate is conducive to control finely the layer thickness and smoothness in the multilayer structure. The root mean square (RMS) surface roughness is only 0.238 nm
measured by atomic force microscopy (AFM). The smooth surface benefits from the low growth rate and small sub-lattice mismatch between the
c
-plane-ZnO thin film and
a
-plane-sapphire substrate.
Look D C. Recent advances in ZnO materials and devices[J].Mater. Sci. Eng. B, 2001, 80(1-3):383-387.[2] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J].J. Appl. Phys., 2005, 98(4):041301-1-3.[3] Osinsky A, Dong J W, Chernyak L, et al. MgZnO/AlGaN heterostructure light-emitting diodes[J].Appl. Phys. Lett., 2004, 85(19):4272-4274.[4] Pauporte T, Lincot D, Pelle F, et al. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition[J].Appl. Phys. Lett., 2006, 89(23):233112-1-3.[5] Tsukazaki A, Ohtomo A, Kawasaki M, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nat. Mater., 2005, 4(1):42-46.[6] Kawasaki M. A key for realizing p-type ZnO[C]//Pacific Rim Conference on Lasers and Electro-Optics, Tokyo: IEEE, 2005:464-465.[7] Ko H J, Chen Y F, Hong S K, et al. MBE growth of high-quality ZnO films on epi-GaN[J].J. Cryst. Growth, 2000, 209(4):816-821.[8] Ohtomo A, Tamura K, Saikusa K, et al. Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001) substrates[J].Appl. Phys. Lett., 1999, 75(17):2635-2637.[9] Tsukazaki A, Ohtomo A, Yoshida S, et al. Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layer[J].Appl. Phys. Lett., 2003, 83(14):2784-2786.[10] Kato H, Sano M, Miyamoto K, et al. High-quality ZnO epilayers grown on Zn-face ZnO substrates by plasma-assisted molecular beam epitaxy[J].J. Cryst. Growth, 2004, 265(3-4):375-381.[11] Kato H, Sano M, Miyamoto K, et al. High-quality ZnO epilayers grown on Zn-polar ZnO substrates by plasma-assisted molecular beam epitaxy[J].Phys. Stat. Sol. B, 2004, 241(3):612-615.[12] Fons P, Iwata K, Niki S, et al. Uniaxial locked growth of high-quality epitaxial ZnO films on (1120) α-Al2O3[J].J. Cryst. Growth, 2000, 209(2-3):532-536.[13] Jiao S J, Zhang Z Z, Lu Y M, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J].Appl. Phys. Lett., 2006, 88(3):031911-1-3.[14] Wei Z P, Lu Y M, Shen D Z, et al. Room temperature p-n ZnO blue-violet light-emitting diodes[J].Appl. Phys. Lett., 2007, 90(4):042113-1-3.[15] Chen Y F, Bagnall D M, Koh H J, et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization[J].J. Appl. Phys., 1998, 84(7):3912-3918.[16] Fons P, Iwata K, Yamada A, et al. Uniaxial locked epitaxy of ZnO on the a face of sapphire[J].Appl. Phys. Lett., 2000, 77(12):1801-1803.[17] Kato H, Sano M, Miyamoto K, et al. MBE growth of Zn-polar ZnO on MOCVD-ZnO templates[J].Phys. Stat. Sol. (b), 2004, 241(12):2825-2829.[18] Sawai Y, Hazu K, Chichibu S F. Surface stoichiometry and activity control for atomically smooth low dislocation density ZnO and pseudomorphic MgZnO epitaxy on a Zn-polar ZnO substrate by the helicon-wave-excited-plasma sputtering epitaxy method[J].J. Appl. Phys., 2010, 108(6):063541-1-8.[19] Setiawan A, Ko H J, Hong S K, et al. Study on MgO buffer in ZnO layers grown by plasma-assisted molecular beam epitaxy on Al2O3(0001)[J].Thin Solid Films, 2003, 445(2):213-218.[20] Park J S, Hong S K, Im I H, et al. Growth of high-quality ZnO films on Al2O3 (0001) by plasma-assisted molecular beam epitaxy[J].J. Cryst. Growth, 2009, 311(7):2163-2166.[21] Fons P, Iwata K, Niki S, et al. Growth of high-quality epitaxial ZnO films on α-Al2O3[J].J. Cryst. Growth, 1999, 201-202:627-632.[22] Iwata K, Fons P, Niki S, et al. Improvement of electrical properties in ZnO thin films grown by radical source(RS)-MBE[J].Phys. Stat. Sol. A, 2000, 180(1):287-292.[23] Chen Y F, Ko H J, Hong S K, et al. Morphology evolution of ZnO(0001) surface during plasma-assisted molecular-beam epitaxy[J].Appl. Phys. Lett., 2002, 80(8):1358-1360.[24] Kato H, Sano M, Miyamoto K, et al. Effect of O/Zn flux ratio on crystalline quality of ZnO films grown by plasma-assisted molecular beam epitaxy[J].Jpn. J. Appl. Phys., 2003, 42(4B):2241-2244.[25] Eaglesham D J, Cerullo M. Dislocation-free Stranski-Krastanow growth of Ge on Si(100)[J].Phy. Rev. Lett., 1990, 64(16):1943-1946.[26] Cordier Y, Ferre D, Chauveau J M, et al. Surface morphology and strain relaxation of InAlAs buffer layers grown lattice mismatched on GaAs with inverse steps[J].Appl. Sur. Sci., 2000, 166(1-4):442-445.[27] Pal R, Singh M, Murlidharan R, et al. Lattice mismatch and surface morphology studies on InxGa1-xAs epilayers grown on GaAs substrates[J].Bull. Mater. Sci., 1998, 21(4):313-316.[28] Baxter J B, Aydil E S. Epitaxial growth of ZnO nanowires on a-and c-plane sapphire[J].J. Cryst. Growth, 2005, 274(3-4):407-411.
0
浏览量
121
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构