浏览全部资源
扫码关注微信
1. 南开大学 光电子薄膜器件与技术研究所, 光电子薄膜器件与技术天津市重点实验室, 光学信息技术科学教育部重点实验室 天津,300071
2. 商丘师范学院,河南 商丘,476000
收稿日期:2013-12-25,
修回日期:2014-01-20,
网络出版日期:2014-03-07,
纸质出版日期:2014-05-03
移动端阅览
丁艳丽, 张晓丹, 梁雪娇等. Na<sup>+</sup>掺杂对LiYF<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup>上转换发光性能的影响[J]. 发光学报, 2014,35(5): 536-541
DING Yan-li, ZHANG Xiao-dan, LIANG Xue-jiao etc. Influence of Na<sup>+</sup> Doping on Upconversion Luminescence of LiYF<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup> Microcrystals[J]. Chinese Journal of Luminescence, 2014,35(5): 536-541
丁艳丽, 张晓丹, 梁雪娇等. Na<sup>+</sup>掺杂对LiYF<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup>上转换发光性能的影响[J]. 发光学报, 2014,35(5): 536-541 DOI: 10.3788/fgxb20143505.0536.
DING Yan-li, ZHANG Xiao-dan, LIANG Xue-jiao etc. Influence of Na<sup>+</sup> Doping on Upconversion Luminescence of LiYF<sub>4</sub>:Er<sup>3+</sup>/Yb<sup>3+</sup> Microcrystals[J]. Chinese Journal of Luminescence, 2014,35(5): 536-541 DOI: 10.3788/fgxb20143505.0536.
上转换发光材料由于低的发光效率,限制了其在太阳电池中的实际应用。为解决此问题,采用溶剂热法制备了LiYF
4
:Er
3+
/Yb
3+
上转换发光颗粒,在LiYF
4
基质中引入Na
+
来打破Er
3+
周围晶体场的对称性,增强其发光性能。研究了Na
+
掺杂对LiYF
4
:Er
3+
/Yb
3+
的结构、形貌及其发光的影响。结果表明:掺杂的Na
+
可以裁剪Er
3+
周围的晶体场,当Na
+
摩尔分数为15%时,得到了较大的发光增强,绿光和红光发射分别获得4.2倍和2.9倍的增强。Er
3+
周围晶体场对称性的降低和材料中OH基团的减少是其发光增强的主要原因。
The applications of the upconversion (UC) phosphors in solar cells are still constrained because of their relatively low luminescence efficiency. In this work
LiYF
4
:Er
3+
/Yb
3+
co-doped with different concentrations of Na
+
was prepared by a simple and green hydrothermal procedure. The co-doping of Na
+
was proposed to enhance UC luminescence of LiYF
4
:Er
3+
/Yb
3+
microcrystals. The influence of Na
+
on the crystal structure
morphology and luminescence of LiYF
4
:Er
3+
/Yb
3+
was investigated. The results indicate that the co-doping of Na
+
can tailor the local crystal field around Er
3+
. Compared with LiYF
4
:Er
3+
/Yb
3+
the green and red emission intensities of LiYF
4
:Er
3+
/Yb
3+
co-doped with 15% Na
+
are enhanced by about 4.2 and 2.9 times
respectively. The distortion of the local symmetry and the reduction of OH groups are confirmed to be the origin of the improvement.
Boyer J C, Van Veggel F C J M. Absolute quantum yield measurements of colloidal NaYF4:Er3+, Yb3+ upconverting nanoparticles[J].Nanoscale, 2010, 2(8):1417-1419.[2] Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J].Chem. Soc. Rev., 2009, 38(4):976-989.[3] Haase M, Schafer H. Upconverting nanoparticles[J].Angew. Chem. Int. Ed., 2011, 50(26):5808-5829.[4] Chen J, Zhao J X. Upconversion nanomaterials: Synthesis, mechanism, and applications in sensing[J].Sensors, 2012, 12(3):2414-2435.[5] Danger T, Koetke J, Brede R, et al. Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature[J].J. Appl. Phys., 1994, 76(4):1413-1417.[6] Shalav A, Richards B S, Trupke T, et al. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response[J].Appl. Phys. Lett., 2005, 86(1-3):013505-1-4.[7] Trupke T, Green M A, Würfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light[J].J. Appl. Phys., 2002, 92(7):4117-4122.[8] Wang Z L, Quan Z W, Jia P Y, et al. A facile synthesis and photoluminescent properties of redispersible CeF3, CeF3:Tb+3, and CeF3:Tb+3/LaF3 (core/shell) nanoparticles[J].Chem. Mater., 2006, 18(8):2030-2035.[9] Mahalingam V, Vetrone F, Naccache R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation[J].Adv. Mater., 2009, 21(40):4015-4028.[10] Deng D, Xu S Q, Zhao S L, et al.Enhancement of upconversion luminescence in Tm3+/Er3+/Yb3+-codoped glass ceramic containing LiYF4 nanocrystals[J].J. Lumin., 2009, 129(11):1266-1270.[11] Chen G Y, Ohulchanskyy T Y, Kachynski A, et al. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1 490 nm[J].ACS Nano, 2011, 5(6):4981-4986.[12] Gun T, Metz P, Huber G. Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm[J].Appl. Phys. Lett., 2011, 99(18):181103-1-4.[13] Nicolas S, Descroix E, Joubert M F, et al. Potentiality of Pr3+ and Pr3++Ce3+-doped crystals for tunable UV upconversion lasers[J].Opt. Mater., 2003, 22(2):139-146.[14] Huang Q W, Yu J C, Ma E, et al. Synthesis and characterization of highly efficient near-infrared upconversion Sc3+/Er3+/Yb3+ tridoped NaYF4[J].J. Phys. Chem. C, 2010, 114(10):4719-4724.[15] Cheng Q, Sui J H, Cai W. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions[J].Nanoscale, 2012, 4(3):779-784.[16] Li D Y, Wang Y X, Zhang X R, et al. Effect of Li+ ions on enhancement of near-infrared upconversion emission in Y2O3:Tm3+/Yb3+ nanocrystals[J].J. Appl. Phys., 2012, 112(9):094701-1-3.[17] Jin X, Zhang X D, Lei Z F, et al. Synthesis and properties of nanocrystal up-converting materials for thin film solar cells[J].Acta Phys. Sinica (物理学报), 2008, 57(7):4580-4584 (in Chinese).[18] Tong J B, Huang Q, Zhang X D, et al. Effect of surface plasmon polariton of Ag nanoparticles on the photoluminescence property of up-conversion materials[J].Acta Phys. Sinica (物理学报), 2012, 61(4):047801-1-7 (in Chinese).[19] Dhananjaya N, Nagabhushana H, Nagabhushana B M, et al. Effect of Li+ ion on enhancement of photoluminescence in Gd2O3:Eu3+ nanophosphors prepared by combustion technique[J].J. Alloys Compd., 2011, 509(5):2368-2374.[20] Zakaria D, Mahiou R, Avignant D, et al. Single-crystal structure refinement and luminescence analysis of β-NaEuF4[J].J. Alloys Compd., 1997, 257(1-2):65-68.
0
浏览量
116
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构