浏览全部资源
扫码关注微信
1. 北京有色金属研究总院稀土材料国家工程研究中心 有研稀土新材料股份有限公司 北京,100088
2. 北京科技大学 冶金工程与生态学院 北京,100083
收稿日期:2013-12-31,
修回日期:2014-01-23,
网络出版日期:2014-02-16,
纸质出版日期:2014-05-03
移动端阅览
马小乐, 庄卫东, 郭汉杰等. Ca取代Sr对Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub>:Ce<sup>3+</sup>荧光粉的发光性能影响[J]. 发光学报, 2014,35(5): 519-525
MA Xiao-le, ZHUANG Wei-dong, GUO Han-jie etc. Influence of Ca for Sr Substitution on Luminescence Properties of Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub> :Ce<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(5): 519-525
马小乐, 庄卫东, 郭汉杰等. Ca取代Sr对Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub>:Ce<sup>3+</sup>荧光粉的发光性能影响[J]. 发光学报, 2014,35(5): 519-525 DOI: 10.3788/fgxb20143505.0519.
MA Xiao-le, ZHUANG Wei-dong, GUO Han-jie etc. Influence of Ca for Sr Substitution on Luminescence Properties of Sr<sub>3</sub>Al<sub>0.6</sub>Si<sub>0.4</sub>O<sub>4.4</sub>F<sub>0.6</sub> :Ce<sup>3+</sup> Phosphors[J]. Chinese Journal of Luminescence, 2014,35(5): 519-525 DOI: 10.3788/fgxb20143505.0519.
采用高温固相法合成Ca取代Sr
3
Al
0.6
Si
0.4
O
4.4
F
0.6
:Ce
3+
中Sr的 Sr
3-
x
Ca
x
Al
0.6
Si
0.4
O
4.4
F
0.6
:Ce
3+
荧光粉。由于Sr
3
Al
0.6
Si
0.4
O
4.4
F
0.6
:Ce
3+
中Sr具有十配位Sr(1)和八配位Sr(2),所以激活剂离子Ce
3+
也具有两个不同的占位。结合Ce
3+
的光谱结果和Van Uitert经验公式,分别研究了十配位Ce(1)
3+
和八配位Ce(2)
3+
的猝灭浓度和荧光寿命,指出是由于Ca的掺入减小了Ce(1)
3+
发光中心,增加了Ce(2)
3+
发光中心,从而出现随着Ca/Sr比增加,样品在400 nm激发下发光强度减小,而在460 nm激发下发光强度增大的现象。同时,Ca的掺入增强了粉体发光的热稳定性。调节Ca含量可以使粉体实现从绿黄色到黄色的发光,表明Sr
3-
x
Ca
x
Al
0.6
Si
0.4
-O
4.4
F
0.6
:Ce
3+
荧光粉是一款潜在的适合近紫外和蓝光激发的白光LED用荧光粉。
The structure and luminescence properties of Sr
3-
x
Ca
x
Al
0.6
Si
0.4
O
4.4
F
0.6
(SCASOF) doped with Ce
3+
are studied as a function of the Ca/Sr ratio. First-principle calculations conform that Ca preferentially occupies 8
h
sites in the host structure. With the increasing of Ca/Sr ratio
the excitation and emission spectra of Sr
3-
x
Ca
x
Al
0.6
Si
0.4
O
4.4
F
0.6
:Ce
3+
phosphors show an obvious red shift
owing to the enhancement of crystal field. Under the excitation of 460 nm
the luminescence intensity of Ce
3+
doped SCASOF phosphors is enhanced with the increase of Ca/Sr ratio. On the contrary
the emission intensity decreases with the increase of Ca/Sr ratio under the excitation of 400 nm. Accordingly
we infer that the incorporation of Ca might change the occupation sites of luminescence center. This assumption is verified by investigating the photoluminescence spectra
quenching concentration and fluorescence lifetime. Moreover
the thermal quenching and chromaticity coordinates variation are also studied. Results show that Ce
3+
doped SCASOF phosphor has a great potentiality to be a near-UV or blue-convertible phosphor for white-light emitting diode.
Feldmann C, Roming M, Trampert K. Polyol-mediated synthesis of nanoscale CaF2 and CaF2:Ce, Tb[J]. Small, 2006, 2(11):1248-1250.[2] Park S, Vogt T. Luminescent phosphors, based on rare earth substitutedoxyfluorides in the A(1)3-xA(2)xMO4F family with A(1)/A(2)=Sr, Ca, Ba and M=Al, Ga[J]. J. Lumin., 2009, 129(9):952-957.[3] Chen W P, Liang H B, Han B, et al. Emitting-color tunable phosphors Sr3GaO4F:Ce3+ at uitraviolet light and low-voltage electron beam excitation[J]. J. Phys. Chem.C, 2009, 113(39):17194-17199.[4] Oskam K D, Kaspers K A, Meijerink A, et al. Luminesence of Sr3Al(Ga)O4F:Ce3+[J]. J. Lumin., 2002, 99(2):101-105.[5] Müller-Bunz H, Schleid T. La3F3[Si3O9]:Das erste fluoridsilicat aus dem ternären system LaF3/La2O3/SiO2[J]. Zeitschrift für Anorganische und Allgemeine Chemie, 1999, 625(8):1377-1383.[6] Xia Z, Liu R S. Tunableblue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs[J]. J. Phys. Chem. C, 2012, 116(29):15604-15609.[7] Zheng C Y, Liang L F, Zheng J J, et al. Luminescence characterization in the phosphors of NaLn4-x(SiO4)3F:xRE3+(Ln=La, Gd; RE=Tb, Dy, Sm, Tm)[J]. Chin. J. Lumin.(发光学报), 2013, 34(11):1462-1467 (in Chinese).[8] Sun J Y, Sun G C, Sun Y N. Luminescence properties and energy transfer investigations of Sr3AlO4F:Ce3+, Tb3+ phosphor[J]. Ceram. Int., 2014, 40(1):1723-1727.[9] Prodjosantoso A K, Kennedy B J, Vogt T, et al. Cation and anion ordering in the layered oxyfluorides Sr3-xAxAlO4F(A=Ba, Ca)[J]. J. Solid State Chem., 2003, 172(1):89-94.[10] Im W B, Brinkley S, Hu J, et al. Sr2.975-xBaxCe0.025AlO4F:A highly efficient green-emitting oxyfuoride phosphor for solid state white lighting[J]. Chem. Mater., 2010, 22(9):2842-2849.[11] Fang Y, Li Y Q, Qiu T, et al. Photoluminescence properties and local electronic structures of rare earth-activated Sr3AlO4F[J]. J. Alloys Compd., 2010, 496(1):614-619.[12] Vogt T, Woodward P M, Hunter B A, et al. Sr3MO4F(M=Al, Ga) — A new family of ordered oxyfluorides[J]. J. Solid State Chem., 1999, 144(1):228-231.[13] Im W B, George N, Kurzman J, et al. Efficient and color-tunable oxyfluoride solid solution phosphors for solid-state white lighting[J]. Adv. Mater., 2011, 23(20):2300-2305.[14] Peng P, Zhuang W D, He H Q, et al. Synthesis and luminescent properties of Sr2.975-xCaxAlO4F:Ce3+0.025 phosphors[J]. J. Chin. Rare Earths Soc.(稀土学报), 2013, 4(31):414-420 (in Chinese).[15] Setlur A A, Radkov E V, Henderson C S, et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors[J]. Chem. Mater., 2010, 22(13):4076-4082.[16] Lee J S, Unithrattil S J, Won B I. Color-tunable binary solid-solution phosphor, (Sr3SiO5)1-x(Sr3AlO4F)x, for white LEDs: Energy transfer mechanism between Ce3+ and Tb3+[J]. J. Alloys Compd., 2013, 555:297-303.[17] Ma X L, Zhuang W D, Guo H J, et al. Synthesis and luminescence properties of Sr3-z(AlxSi1-x)O5-xFx:zCe3+ phosphors[J]. J. Rare Earths, 2013, 31(7):665-668.[18] Jorgensen C K. Modern Aspects of Ligand Field Theory [M]. Amsterdam: North-Holland Publishing Company, 1971.[19] Wu J L, Gundiah G, Cheetham A K. Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting[J]. Chem. Phys. Lett., 2007, 441(4):250-254.[20] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides andchalcogenides[J]. Acta. Cryst.A, 1976, 32(5):751-767.[21] Blasse G, Grabmaier B C. Energy Transfer [M]. Berlin: Springer, 1994, 44:91-107.[22] Van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds[J]. J. Lumin., 1984, 29(5):1-9.
0
浏览量
90
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构