浏览全部资源
扫码关注微信
1. 北京交通大学 理学院 北京,100044
2. 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 北京,100190
收稿日期:2013-11-07,
修回日期:2013-12-24,
网络出版日期:2014-03-07,
纸质出版日期:2014-05-03
移动端阅览
杜晓雷, 吕燕伍, 江潮. 单层与双层WSe<sub>2</sub>纳米片层的光致发光[J]. 发光学报, 2014,35(5): 513-518
DU Xiao-lei, LYU Yan-wu, JIANG Chao. Photoluminescence Properties of WSe<sub>2</sub> Monolayer and Bilayer Nanosheets[J]. Chinese Journal of Luminescence, 2014,35(5): 513-518
杜晓雷, 吕燕伍, 江潮. 单层与双层WSe<sub>2</sub>纳米片层的光致发光[J]. 发光学报, 2014,35(5): 513-518 DOI: 10.3788/fgxb20143505.0513.
DU Xiao-lei, LYU Yan-wu, JIANG Chao. Photoluminescence Properties of WSe<sub>2</sub> Monolayer and Bilayer Nanosheets[J]. Chinese Journal of Luminescence, 2014,35(5): 513-518 DOI: 10.3788/fgxb20143505.0513.
采用气相沉积法制备了WSe
2
二维纳米材料,对其低温光致发光谱进行了研究。结果表明:随着WSe
2
层数的增加,其光致发光强度单调下降;当WSe
2
层数从单层增加为双层时,其发光强度急剧下降,表明其能带结构已从直接带隙转变为间接带隙。进一步研究了双层WSe
2
的变温光致发光谱,发现随着温度的升高,双层WSe
2
发光峰中A峰峰位的变化基本符合半导体带隙的温度变化规律,而I峰峰位红移与温度基本成线性关系,表明双层WSe
2
同时存在间接和直接跃迁,且直接跃迁和间接跃迁特性不同。
We systematically studied the low-temperature (12 K) photoluminescence (PL) spectroscopies of WSe
2
nanosheets prepared by vapor deposition technique. It is found that PL intensity monotonically decreases with the increasing of WSe
2
nanosheet layers. In particular
the PL intensity dramatically decreased when the thickness of WSe
2
films changed from monolayer to bilayer
which indicated that there is a direct-to-indirect transition in the band gap of WSe
2
nanosheets. Then we focused on the variable temperature photoluminescence of the bilayer structure. When the temperature increases from 12 K to 300 K
the temperature-dependent evolution of the direct transition energy (peak A) is approximately consistent with the common formula obeyed by bulk semiconductors
while the indirect transition energy (peak I) can only be described by a linear relationship with temperature. This indicates that peak A and peak I have different transition characteristics and these two transition characteristics coexist in bilayer WSe
2
simultaneously.
Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene[J].Nat. Phys., 2011, 7(7):701-704.[2] Ponomarenko L A, Schedin F, Katsnelson M I, et al. Chaotic Dirac billiard in graphene quantum dots[J].Science, 2008, 320(5874):356-358.[3] Berkdemir A, Gutiérrez H R, Botello-Méndez A R, et al. Identification of individual and few layers of WS2 using Raman spectroscopy[J].Sci. Rep., 2013, 3:1755-1-6.[4] Choi W, Cho M Y, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared[J].Adv. Mater., 2012, 24(43):5832-5833.[5] Zeng H L, Liu G B, Dai J F, et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides[J].Sci. Rep., 2013, 3:1608-1-4.[6] Zhao W J, Ghorannevis Z, Chu L Q, et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2[J].ACS Nano, 2013, 7(1):791-797.[7] Yun W S, Han S W, Hong S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te)[J].Phy. Rev. B, 2012, 85(3):033305-1-4.[8] Liu W, Kang J H, Sarkar D, et al. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors[J].Nano Lett., 2013, 13(5):1983-1990.[9] Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts[J].Nano Lett., 2012, 12(7):3788-3792.[10] Zhao W J, Ghorannevis Z, Kumar A K, et al. Lattice dynamics in mono and few layer sheets of WS2 and WSe2[J].Nanoscale, 2013, 5(20):9677-9683.[11] Kong D S, Wang H T, Cha J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers[J].Nano Lett., 2013, 13(3):1341-1347.[12] Tonndorf P, Schmidt R, Böttger P, et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2[J].Opt. Exp., 2013, 21(4):4908-4916.[13] Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J].Nano Lett., 2010, 10(4):1271-1275.[14] Voß D, Krüger P, Mazur A, et al. Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems[J].Phy. Rev. B, 1999, 60(20):14311-14317.[15] Beal A R, Knights J C, Liang W Y. Transmission spectra of some transition-metal dichalcogenides. Ⅱ. group VIA: Trigonal prismatic coordination[J].J. Phys. C, 1972, 5(24):3547-3550.[16] Ramasubramaniam A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides[J].Phy. Rev. B, 2012, 86(11):115409-1-6.[17] Mak K F, Lee C G, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J].Phy. Rev. Lett., 2010, 105(13):136805-1-4.[18] Gutieérrez H R, Perea-López N, Elías A L, et al. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers[J].Nano Lett., 2013, 13(8):3447-3454.[19] Ross J S, Wu S F, Yu H Y, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor[J].Nat. Commun., 2013, 4:1474-1-8.[20] Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J].Nat. Nanotechnol., 2012, 7(8):494-498.[21] Sahin H, Tongay S, Horzum S, et al. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2[J].Phy. Rev. B, 2013, 87(16):165409-1-6.[22] Bromley R A, Murray R B, Yoffe A D. The band structures of some transition-metal dichalcogenides: Ⅲ. Group VIA:Trigonal prism materials[J].J. Phys. C, 1972, 5:764-777.
0
浏览量
370
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构