浏览全部资源
扫码关注微信
1. 华南师范大学 华南先进光电子研究院,广东 广州,510006
2. 华南师范大学 物理与电信工程学院,广东 广州,510006
收稿日期:2013-10-30,
修回日期:2014-01-25,
纸质出版日期:2014-04-03
移动端阅览
刘洋, 唐吉玉, 王茜等. Ge基二维正方晶格光子晶体带隙优化设计[J]. 发光学报, 2014,35(4): 491-495
LIU Yang, TANG Ji-yu, WANG Xi etc. Optimal Design of Photonic Band Gap in Ge-based Tetragonal Lattice 2D Photonic Crystal[J]. Chinese Journal of Luminescence, 2014,35(4): 491-495
刘洋, 唐吉玉, 王茜等. Ge基二维正方晶格光子晶体带隙优化设计[J]. 发光学报, 2014,35(4): 491-495 DOI: 10.3788/fgxb20143504.0491.
LIU Yang, TANG Ji-yu, WANG Xi etc. Optimal Design of Photonic Band Gap in Ge-based Tetragonal Lattice 2D Photonic Crystal[J]. Chinese Journal of Luminescence, 2014,35(4): 491-495 DOI: 10.3788/fgxb20143504.0491.
采用平面波展开法模拟二维光子晶体在E极化和H极化下的能带结构,研究Ge基二维正方晶格光子晶体的填充比以及晶格排列结构对最大禁带宽度的影响。结果表明:在空气背景材料中填充Ge柱的介质柱结构中,可产生TE、TM带隙,且各方向完全带隙出现在
r/a
=0.19~0.47范围内,最大完全帯隙禁带宽度可以达到0.064(归一化频率);在选取Ge为背景材料的空气孔型结构中,同样可产生TE、TM带隙,且各方向完全带隙出现在
r/a
=0.46~0.49范围内,最大完全帯隙禁带宽度可以达到0.051(归一化频率)。同时,不论在介质柱型还是空气孔型结构中,带隙宽度都随着
r/a
的增大呈先增大后减小的趋势。
Using the plane wave expansion method
the band structure of two-dimensional photonic crystal was calculated under E polarization and H polarization. The influence of Ge-based tetragonal lattice photonic crystal filling ratio and the lattice structure on the maximum photonic band gap were analyzed. When Ge cylinders are placed in the air background
the TE band and TM band generate and the maximum complete band gap appears in the range of
r/a
=0.19~0.47
the maximum photonic band gap width can reach 0.064(normalized frequency). When air holes are placed in the Ge background
the TE and TM band also generate
and the maximum complete band gap appears in the range of
r/a
=0.46~0.49
the maximum photonic band gap width can reach 0.051(normalized frequency). Meanwhile
in both of the cylinder and air holes structure
along with the rising of
r/a
the band gap width increases at first
and then decreases.
Yablonovitch E. Inhibited spontaneous emission in solid-state physics electronics[J]. Phys. Rev. Lett., 1987, 58(20):2059-2062. [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23):2486-2489. [3] Lin S Y, Cho E W, Hietala V, et al. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal[J]. Science, 1998, 282(5387):274-276. [4] Joannopoulos J D, Villeneuve P R, Fan S. Photonic crystals: Putting a new twist on light[J]. Nature, 1997, 386:143-149 [5] Liang L J. Propagation characteristic of 2D triangular lattice photonic crystal in THz range[J]. Chin. J. Lumin.(发光学报), 2010, 31(2):142-146 (in Chinese). [6] Sun W Q, Liu Y M, Wang D L, et al. Influence of disorder and deformation on the optical properties of a two-dimensional photonic crystal waveguide[J]. Chin. Phys. B, 2013, 22(1):2011-2015. [7] Lin H B, Tonucci R J, Campillo A J. Two-dimensional photonic bandgap optical limiter in the visible[J]. Opt. Lett., 1998, 23(1):94-96 [8] Guan C Y, Yuan L B. Photonic band gap of 2D complex-lattice photonic crystals[J]. Optoelectron.Lett., 2009, 5(2):120-123. [9] Chen S, Wang W B, Liang J Q, et al. Two-dimensional square photonic crystal microcavities[J]. Chin. J. Lumin.(发光学报), 2006, 28(1):7-11 (in Chinese). [10] Cao Y, Cui D N, Tong Z R. Coupling characteristics of the high-polarization dualcore photonic crystal fiber with mixing air holes[J]. Opt. Lett., 2013, 9(2):128-130. [11] Li Z Q, Wang Y N, Li W C, et al. Extraction efficiency enhancement of LEDs using 2-D photonic crystal[J]. Opt. Lett., 2012, 8(3):187-189. [12] Li M Y, Gu P F. Optimal design of two-dimensional photonic crystal polarization splitters[J]. Acta. Phys. Sinica (物理学报), 2005, 54(5):062304-1-5 (in Chinese).
0
浏览量
138
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构