浏览全部资源
扫码关注微信
1. 太原理工大学 新材料工程技术研究中心,山西 太原,030024
2. 太原理工大学 新材料界面科学与工程教育部重点实验室,山西 太原,030024
收稿日期:2013-12-25,
修回日期:2014-02-07,
网络出版日期:2014-01-03,
纸质出版日期:2014-04-03
移动端阅览
杜晓刚, 王华, 刘慧慧等. 基于Ir(ppy)<sub>3</sub>载流子直接复合发光的OLED机理研究[J]. 发光学报, 2014,35(4): 481-485
DU Xiao-gang, WANG Hua, LIU Hui-hui etc. Investigation on The Direct Charge-recombination Mechanism of Ir(ppy)<sub>3</sub> in OLED[J]. Chinese Journal of Luminescence, 2014,35(4): 481-485
杜晓刚, 王华, 刘慧慧等. 基于Ir(ppy)<sub>3</sub>载流子直接复合发光的OLED机理研究[J]. 发光学报, 2014,35(4): 481-485 DOI: 10.3788/fgxb20143504.0481.
DU Xiao-gang, WANG Hua, LIU Hui-hui etc. Investigation on The Direct Charge-recombination Mechanism of Ir(ppy)<sub>3</sub> in OLED[J]. Chinese Journal of Luminescence, 2014,35(4): 481-485 DOI: 10.3788/fgxb20143504.0481.
针对载流子在面式-三(2-苯基吡啶基-
N,C
2
)铱(Ⅲ)(Ir(ppy)
3
)上的聚集会对器件性能产生不良影响,在发光层中分别掺入4% 的双(2-(4,6-二氟苯基)吡啶基-N,C
2
)铱(Ⅲ)(吡啶-2-羧基)配合物(FIrpic)和4% 的4,4,4"-三(咔唑-9-基)三苯胺(TCTA),器件的性能有明显的提高,最高电流效率分别达到51 cd/A和43.1 cd/A,提高约79%和50%,我们将器件效率的提高归因于TCTA和FIrpic可以使聚集在Ir(ppy)
3
界面的空穴向主体材料4,4-二(咔唑-9-基)联苯(CBP)转移,进而可减弱对激子的猝灭作用。
We present a simple efficient green phosphorescent device based on the direct charge-recombination mechanism in heavy doping Ir(ppy)
3
. The 4
4'
4"-Tris(carbazol-9-yl)triphenylamine (TCTA) and bis (4
6-difluorophenyl-pyridine)(picolinate) iridium(Ⅲ) (FIrpic) are selected as doping materials that doped into emitting layer respectively. The maximum current efficiency values of 43.1 cd/A and 51 cd/A are demonstrated in these devices
which increased by 50% and 79%
respectively. The results reveal a practical way to fabricate highly efficient bilayer organic devices.
Baldo M A, OBrien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698):151-154. [2] Reineke S, Lindner F, Schwartz G, et al. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244):234-238. [3] Holmes R J, DAndrade B W, Forrest S R, et al. Efficient, deep-blue organic electrophosphorescence by guest charge trapping[J]. Appl. Phys. Lett., 2003, 83(18):3818-3820. [4] Lee J, Chopra N, Eom S H, et al. Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices[J]. Appl. Phys. Lett., 2008, 93(12):123306-1-3. [5] Zheng Y, Wee Andrew T S, Troadec C. Temperature-dependent transition from injection-limited to space-charge-limited current in metal-organic diodes[J]. Appl. Phys. Lett., 2009, 95(14):143303-1-3. [6] Wang Q, Ding J Q, Ma D G, et al. Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off[J]. Appl. Phys. Lett., 2009, 94(10):103503-1-3. [7] Liu Z W, Helander M G, Wang Z B, et al. Efficient bilayer phosphorescent organic light-emitting diodes: Direct hole injection into triplet dopants[J]. Appl. Phys. Lett., 2009, 94(11):113305 -1-3. [8] Orselli E, Kottas G S, Konradsson A E, et al. Blue-emitting iridium complexes with substitued 1, 2, 4-triazole ligands:Synthesis, photophysics, and devices[J]. Inorg. Chem., 2007, 46(26):11082-11093. [9] Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light emitting device[J]. Appl. Phys. Lett., 2001, 90(10):5048-5051. [10] Baldo M A, Adachi C, Forrest S R. Transient analysis of triplet-triplet annihilation. Ⅱ. Transient analysis of organic electrophosphorescence[J]. Phys. Rev. B, 2000, 62(16):10967-10977. [11] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Phys. Rev. B, 2007, 75(12):125328-1-14. [12] Chen F C, Chien S C, Chen Y S. Single-layer triplet white polymer light-emitting diodes incorporating polymer oxides:Effect of charge trapping at phosphorescent dopants[J]. Appl. Phys. Lett., 2009, 94(4):043306-1-3. [13] Wang Q, Ding J, Ma D, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: Fabrication and emission-mechanism analysis[J]. Adv. Funct. Mater., 2009, 19(1):84-95. [14] Shih P I, Shu C F, Tung Y L, et al. Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials[J]. Appl. Phys. Lett., 2006, 88(25):251110-1-3. [15] Kondakov D Y, Sandifer J R, Tang C W, et al. Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss[J]. J. Appl. Phys., 2003, 93(2):1108-1119. [16] Zhao Y B, Zhu L P, Chen J S, et al. Improving color stability of blue/orange complementary white OLEDs by using single-host double-emissive layer structure: Comprehensive experimental investigation into the device working mechanism[J]. Org. Electron., 2012, 13(8):1340-1348.
0
浏览量
228
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构