浏览全部资源
扫码关注微信
河北大学 物理科学与技术学院,河北 保定,071002
收稿日期:2013-11-22,
修回日期:2013-12-12,
网络出版日期:2014-01-24,
纸质出版日期:2014-04-03
移动端阅览
董丽芳, 李永辉,. 大气压氩气射流等离子体放电发展速度研究[J]. 发光学报, 2014,35(4): 476-480
DONG Li-fang, LI Yong-hui,. Propagation Velocity in Hollow Needle to Plate Discharge[J]. Chinese Journal of Luminescence, 2014,35(4): 476-480
董丽芳, 李永辉,. 大气压氩气射流等离子体放电发展速度研究[J]. 发光学报, 2014,35(4): 476-480 DOI: 10.3788/fgxb20143504.0476.
DONG Li-fang, LI Yong-hui,. Propagation Velocity in Hollow Needle to Plate Discharge[J]. Chinese Journal of Luminescence, 2014,35(4): 476-480 DOI: 10.3788/fgxb20143504.0476.
利用交流空心针-板放电装置,在大气压环境中产生了两种不同极性的氩射流等离子体,利用放电产生的等离子体发光信号,研究了两种等离子的形貌和放电的发展速度。利用高速相机拍摄了两次放电的形貌,发现正半周放电长度约为0.8 cm,负半周放电长度约为1.6 cm。然后利用两个光电倍增管配合,分别测量了正负半周放电的发展速度,正半周放电发展速度为(3.10.2)10
6
cm/s,负半周放电发展速度为(2.20.1)10
7
cm/s,而且两次放电的发展方向相同。通过对电子激发温度空间分布的分析,发现电场是影响等离子发展速度的重要因素。
Two kinds of atmospheric argon plasma jet were generated by hollow needle to plate discharge. The velocity of discharge propagation was measured by two photomultipliers (PMT) and the length of the discharge was recorded by an ICCD camera. It was found that the velocity and the length were different during different voltage phase. In the positive discharge
the length and the velocity were 0.8 cm and (3.10.2)10
6
cm/s
respectively. While in the negative discharge
they were 1.6 cm and (2.20.1)10
7
cm/s
respectively. However
the two discharges propagated along the same direction. Moreover
the distribution of excitation temperature was obtained. The results show that the electric field plays an important role in propagating of plasma jet.
Li N, Wang B, Jin H L, et al. Numerically controlled atmospheric pressure plasma processing of micro-structured optics[J]. Opt. Precision Eng.(光学 精密工程), 2013, 21(4):934-940 (in Chinese). [2] Wang H, Xia X P, Zhou R D. Marching and functional testing of microplasma reactors[J]. Opt. Precision Eng.(光学 精密工程), 2012, 20(4):811-817 (in Chinese). [3] Becker K H, Schoenbach K H, Eden J G. Microplasmas and applications[J]. J. Phys. D: Appl. Phys., 2006, 39(3):R55-70. [4] Walsh J L, Iza F, Janson N B, et al. Three distinct modes in a cold atmospheric pressure plasma jet[J]. J. Phys. D:Appl. Phys., 2010, 43(7):075201-1-5. [5] Mariotti D. Nonequilibrium and effect of gas mixtures in atmospheric microplasma[J]. Appl. Phys. Lett., 2008, 92(15):151505-1-3. [6] Wang E W, Yu W X, Wang C, et al. Nanogap measurement by using surface plasmon resonance sensor[J]. Chin. Opt.(中国光学), 2013, 6(2):259-266 (in Chinese). [7] Belevtsev A A, Firsov K N, Yu K S, et al. Electron detachment instability and self-organization of gas discharge plasma in working mixtures of chemical non-chain HF(DF) lasers[J]. Chin. Opt.(中国光学), 2011, 4(1):31-40 (in Chinese). [8] Ren Y, Li F J, Dong X, et al. Research of guiding energy with plasma channel induced by femtosecond laser in air[J]. Chin. Opt.(中国光学), 2012, 5(2):133-142 (in Chinese). [9] Kdzierski J, Engemann J, Teschke M, et al. Atmospheric pressure plasma jets for 2D and 3D materials processing[J]. Solid State Phenomena, 2005, 107(10):119-124. [10] Jiang N, Cao Z X. Experimental studies on an atmospheric pressure He plasma jet[J]. Acta Phys. Sinica (物理学报), 2010, 59(5):3324-1-7 (in Chinese). [11] Kim S J, Chung T H, Bae S H. Striation and plasma bullet propagation in an atmospheric pressure plasma jet[J]. Phys. Plasma, 2010, 17(5):053504-1-5. [12] Qi B, Huang J J, Qiu Y M, et al. Diagnosis of the ion density in two discharge modes generated in atmospheric pressure argon with pin-to-plate dielectric barrier geometry[J]. Phys. Plasma, 2011, 18(8):083302-1-6. [13] Sands B L, Ganguly B N, Tachibana K. A streamer-like atmospheric pressure plasma jet[J]. Appl. Phys. Lett., 2008, 92(15):151503-1-4. [14] Jiang C, Chen M T, Gundersen M A. Polarity-induced asymmetric effects of nanosecond pulsed plasma jets[J]. J. Phys. D: Appl. Phys., 2009, 42(23):232002-1-5. [15] Liu F C, Wang D Z. One-dimensional simulation of helium cold plasma jet discharge at atmospheric pressure[J]. High Voltage Engineering (高电压技术), 2012, 38(7):1749-1757 (in Chinese). [16] Fang Z, Liu Y, Cai L L. Discharge characteristics of atmosphere pressure plasma jet in Ar[J]. High Voltage Engineering (高电压技术), 2012, 38(7):1613-1622 (in Chinese).
0
浏览量
163
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构