浏览全部资源
扫码关注微信
1. 天津理工大学 理学院 天津,300384
2. 天津理工大学 教育部显示材料与光电器件重点实验室, 天津光电材料与器件重点实验室 天津,300384
收稿日期:2013-12-23,
修回日期:2014-01-28,
纸质出版日期:2014-04-03
移动端阅览
白潇, 程晓曼, 樊剑锋等. PVA栅绝缘层浓度对P3HT有机场效应晶体管性能的影响[J]. 发光学报, 2014,35(4): 470-475
BAIXiao, CHENG Xiao-man, FAN Jian-feng etc. Effect of Poly(vinyl alcohol) Gate Dielectric Concentration on Poly(3-hexylthiophene) Based Organic Field Effect Transistor[J]. Chinese Journal of Luminescence, 2014,35(4): 470-475
白潇, 程晓曼, 樊剑锋等. PVA栅绝缘层浓度对P3HT有机场效应晶体管性能的影响[J]. 发光学报, 2014,35(4): 470-475 DOI: 10.3788/fgxb20143504.0470.
BAIXiao, CHENG Xiao-man, FAN Jian-feng etc. Effect of Poly(vinyl alcohol) Gate Dielectric Concentration on Poly(3-hexylthiophene) Based Organic Field Effect Transistor[J]. Chinese Journal of Luminescence, 2014,35(4): 470-475 DOI: 10.3788/fgxb20143504.0470.
采用溶液制备法制备了用PVA作为绝缘层、P3HT作为有源层的有机场效应晶体管,
研究了不同浓度PVA栅绝缘层对器件性能的影响。实验结果显示
以质量分数为8%的PVA溶液制备的栅绝缘层具有最好的性能,器件的场效应迁移率为0.31 cm
2
V
-1
s
-1
,阈值电压为-6 V。进一步分析了PVA栅绝缘层浓度对器件性能提高的原因,结果表明,对于制备溶液化的有机场效应晶体管,选取合适的PVA栅绝缘层浓度非常重要。
Poly(3-hexylthiophene) based organic field effect transistors with poly(vinyl alcohol) gate dielectrics were fabricated by solution process. The effects of PVA gate dielectrics concentration on the performance of the devices were investigated. The experimental results show that the device with PVA mass fraction of 8% displays the best performance
which the field-effect mobility is up to 0.31 cm
2
V
-1
s
-1
and the threshold voltage is as low as -6 V. Furthermore
the reason for the performance improvement of the devices was analyzed. It indicates that the appropriate PVA concentration is extremely important for the solution-processed OFETs.
Zheng H, Cheng X M, Tian H J, et al. Enhanced performance of C60 organic field effect transistors using a tris (8-hydroxyquinoline) aluminum buffer layer [J]. J. Semicond.(半导体学报), 2011, 32(9):094005-1-4 (in English). [2] Sun Z, Ye Q, Yan C, et al. Low band gap polycyclic hydrocarbons: From closed-shell near infrared dyes and semiconductors to open-shell radicals [J]. Chem. Soc. Rev., 2012, 41(23):7857-7889. [3] Ling Q D, Liaw D J, Zhu C X, et al. Polymer memories: Bistable electrical switching and device performance [J]. Polymer, 2007, 48(18):917-978. [4] Namdas E B, Samuel I D W, Shukla D, et al. Organic light emitting complementary inverters [J]. Appl. Phys. Lett., 2010, 96(4): 043304-1-3. [5] Bao Z N, Dodabalapur A, Lovinger A J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J]. Appl. Phys. Lett., 1996, 69(26):4108-4110. [6] Sung K P, Yong H K, Jeong I H, et al. Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates [J]. Synth. Met., 2003, 139(2):377-384. [7] Chang J F, Sun B Q, Breiby D W, et al. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents [J]. Chem. Mater., 2004, 16(23):4772-4776. [8] Kim K, Yu H, Kang H. Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices [J]. J. Mater. Chem. A, 2013, 46(1):14538-14547. [9] Stingelinstutzmann N, Smits E, Wondergem H, et al. Thin-film field-effect transistors, inverters and ring-oscillators from vitreous, solution-processed rubrene hypereutectics [J]. Nat. Mater., 2005, 4:601-606. [10] DiBenedetto S A, Facchetti A. Self-assembly: Molecular self-assembled monolayers and multilayers for organic and unconventional inorganic thin-film transistor applications [J]. Adv. Mater., 2009, 21(14):1406-1433. [11] Liang X Y, Cheng X M, Du B Q, et al. Enhanced performance of C60 n-type organic field-effect transistors using a pentacene passivation layer [J]. J. Semicond.(半导体学报), 2013, 34(8):084002-1-5 (in English). [12] Singh T B, Mwghdadi F, Gnes S, et al. High-performance ambipolar pentacene organic field-effect transistors on poly (vinyl alcohol) organic gate dielectric [J]. Adv. Mater., 2005, 17(19):2315-2320. [13] Yoshihito K, Yuki Y, Kiroaki H, et al. OFET characteristics of stretched poly(3-hexylthiophene) films [J]. Electrochem., 2012, 78(3):191-193. [14] Necliudov P V, Shur M S, Gundlach D J, et al. Modeling of organic thin film transistors of different designs [J]. J. Appl. Phys., 2000, 88(11):6594-6597. [15] Seshadri K,Frisbie C D. Potentiometry of an operating organic semiconductor field-effect transistor [J]. Appl. Phys. Lett., 2001, 78(7):993-995. [16] Horowitz G. Field-effect transistors based on short organic molecules [J]. J. Mater. Chem., 1999, 9(9):2021-2026. [17] Meng H, Liu C C, Jiang C J, et al. Effect of gate metal on polymer transistor with glass substrate [J]. Appl. Phys. Lett., 2006, 89(24):243503-1-3.
0
浏览量
108
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构