浏览全部资源
扫码关注微信
深圳大学材料学院 深圳市特种功能材料重点实验室,广东 深圳,518060
收稿日期:2013-12-26,
修回日期:2014-01-20,
网络出版日期:2014-02-16,
纸质出版日期:2014-04-03
移动端阅览
曹培江, 彭双娇, 韩舜等. ZnO纳米/微米结构传感器对乙醇气敏性研究[J]. 发光学报, 2014,35(4): 460-464
CAO Pei-jiang, PENG Shuang-jiao, HAN Shun etc. Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol[J]. Chinese Journal of Luminescence, 2014,35(4): 460-464
曹培江, 彭双娇, 韩舜等. ZnO纳米/微米结构传感器对乙醇气敏性研究[J]. 发光学报, 2014,35(4): 460-464 DOI: 10.3788/fgxb20143504.0460.
CAO Pei-jiang, PENG Shuang-jiao, HAN Shun etc. Gas-sensitive Property of Nano/Micro-structured ZnO Sensors on Ethanol[J]. Chinese Journal of Luminescence, 2014,35(4): 460-464 DOI: 10.3788/fgxb20143504.0460.
采用化学气相法分别在石英舟内表面和单晶硅衬底上制备了ZnO微米片、纳米线、微米四足体以及微米球4种结构,并制作了相应的气敏传感器。扫描电子显微镜、气敏测试仪等结果显示:合成的ZnO纳米/微米结构尺寸在200 nm~100 m之间,传感器最佳工作电流区间为120~130 mA,其中微米四足体制备的传感器灵敏度高达127,展现出优异的气敏特性。在4种结构中,微米四足体材料内部的V
O
缺陷含量最高,结合气敏测试与荧光光谱结果,我们认为材料内部的V
O
缺陷含量是影响材料气敏特性的最重要因素。
The micro plates
nano wires
micro tetrapods and micro spheres of ZnO were fabricated on the internal surface of quartz boat and the surface of single crystal silicon by chemical vapor deposition method
and the corresponding gas sensors were made. The following testing results from scanning electron microscope
the gas sensor testing instrument were obtained. The as grown ZnO with nano/micro structures have a different size from 200 nm to 100 m. The optimized working currents range of these sensors are 120 ~ 130 mA. The gas sensor fabricated by micro tetrapods of ZnO exhibits the best sensitivity property and the corresponding sensitivity is up to 127. The highest content of V
O
defect exists in micro tetrapods of ZnO. Combining the gas sensor testing with PL spectra results
we attribute the most important factor affecting the gas sensor property to the content of V
O
defect in these materials.
Kong Y C, Yu D P, Feng S Q, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Appl. Phys. Lett., 2001, 78(4):407-409. [2] Xu W Z, Ye Z Z, Ma D W, et al. Quasi-aligned ZnO nanotubes grown on Si substrates[J]. Appl. Phys. Lett., 2005, 87(9):093110-1-3. [3] Heath J R, Kuekes P J, Snider G S, et al. A defect-tolerant computer architecture: Opportunities for nanotechnology[J]. Science, 1998, 280(5370):1716-1721. [4] Kong X Y, Ding Y, Yang R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science, 2004, 303:1348-1351. [5] Lao J Y, Huang J Y, Ren Z F, et al. ZnO nanobridges and nanonails[J]. Nano Lett., 2003, 3(2):235-238. [6] Kong X Y, Wang Z L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts[J]. Nano Lett., 2003, 3(12):1625-1631. [7] Yang P D, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their optical properties[J]. J. Adv. Funct. Mater., 2002, 12(5):323-331. [8] Dai Z R, Pan Z W, Wang Z L. Gallium oxide nanoribbons and nanosheets[J]. J. Phys. Chem. B, 2002, 106(5):902-904. [9] Zhang J, Sun L D, Liao C S, et al. ZnO microcrystals with diverse morphologies[J]. Chin. J. Inorg. Chem.(无机化学学报), 2002, 18(1):72-74 (in Chinese). [10] Li C C, Du Z F, Li L M, et al. Surface-depletion controlled gas sensing of ZnO nanorods grown at room temperature[J]. Appl. Phys. Lett., 2007, 91(3):032101-1-3. [11] Zhang Y, Xu J Q, Xiang Q, et al. Brush-like hierarchical ZnO nanostructures:Synthesis, photoluminescence and gas sensor properties[J]. J. Phys. Chem. C, 2009, 113(9):3430-3435. [12] Xu J Q, Pan Q Y, Tian Z Z, et al. Grain size control and gas properties of ZnO gas sensors[J]. Sens. Actuat. B, 2000, 66(1-3):277-279. [13] Han N, Wu X F, Chai L Y, et al. Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors[J]. Sens. Actuat. B, 2010, 150(1):230-238. [14] Ke L, Lai S C, Ye J D, et al. Point defects analysis of zinc oxide thin films annealed at different temperatures with photoluminescence, Hall mobility, and low frequency noise[J]. J. Appl. Phys., 2010, 108(8):084502-1-6. [15] Ton-That C, Weston L, Phillips M R. Characteristics of point defects in the green luminescence from Zn-and O-rich ZnO[J]. Phys. Rev. B, 2012, 86(11):115205-1-5. [16] Leunga Y H, Chena X Y, Ng A M C, et al. Green emission in ZnO nanostructures-examination of the roles of oxygen and zinc vacancies[J]. Appl. Surf. Sci., 2013, 271:202-209. [17] Wang C X, Yin L W, Zhang L Y, et al. Metal oxide gas sensors: Sensitivity and influencing factors[J]. Sensors, 2010, 10(3):2088-2106.
0
浏览量
210
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构