浏览全部资源
扫码关注微信
1. 内蒙古师范大学 化学与环境科学学院,内蒙古 呼和浩特,010022
2. 内蒙古师范大学 内蒙古功能材料物理与化学重点实验室,内蒙古 呼和浩特,010022
收稿日期:2013-11-27,
修回日期:2013-12-22,
网络出版日期:2014-01-24,
纸质出版日期:2014-04-03
移动端阅览
裴建峰, 吴青龙, 德格吉呼. CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>, <em>y</em>Er<sup>3+</sup>纳米颗粒的合成及其上转换发光性质[J]. 发光学报, 2014,35(4): 448-453
PEI Jian-feng, WU Qing-long, DE Ge-ji-hu. Synthesis and Up-conversion Luminescence Properties of CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>,<em>y</em>Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(4): 448-453
裴建峰, 吴青龙, 德格吉呼. CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>, <em>y</em>Er<sup>3+</sup>纳米颗粒的合成及其上转换发光性质[J]. 发光学报, 2014,35(4): 448-453 DOI: 10.3788/fgxb20143504.0448.
PEI Jian-feng, WU Qing-long, DE Ge-ji-hu. Synthesis and Up-conversion Luminescence Properties of CaF<sub>2</sub>:<em>x</em>Yb<sup>3+</sup>,<em>y</em>Er<sup>3+</sup> Nanoparticles[J]. Chinese Journal of Luminescence, 2014,35(4): 448-453 DOI: 10.3788/fgxb20143504.0448.
采用水热合成法制备了CaF
2
:
x
Yb
3+
,
y
Er
3+
(
x
=0.1~0.8,
y
=0.01~0.08)纳米颗粒,利用X射线粉末衍射仪、透射电子显微镜和F-4600荧光分光光度计表征了样品的物相和形貌尺寸,并探究了Yb
3+
和Er
3+
掺杂浓度对样品的上转换发光性质的影响。结果表明,所合成的样品为立方相,球形颗粒,平均直径为 12 nm,敏化剂Yb
3+
的最佳掺杂摩尔分数为20%,而激活剂Er
3+
的最佳掺杂摩尔分数为6%。此时,绿光与红光的强度之比最大。
Green up-conversion luminescence material CaF
2
:
x
Yb
3+
y
Er
3+
(
x
=0.1~0.8
y
=0.01~0.08) nanoparticles were synthesized by the hydrothermal method. The crystal structure
morphology and up-conversion spectra of the samples were characterized using X-ray powder diffractometer
transmission electron microscope and fluorescence spectrophotometer with single-wavelength diode laser of 980 nm. The samples are cubic phase and spherical shape with an average size of 12 nm. The influence of Yb
3+
and Er
3+
concentration on the up-conversion luminescence of the CaF
2
:
x
Yb
3+
y
Er
3+
(
x
=0.1~0.8
y
=0.01~0.08) nanoparticles were systematically investigated and discussed. It is found that the optimum mole fraction of the sensitizer Yb
3+
is 20% and the activator Er
3+
is 6%. At this point
the ratio of the green and red light intensity is the largest.
Boyer D, Mahiou R. Powders and coatings of LiYF4:Eu3+ obtained via an original way based on the sol-gel process[J]. Chem. Mater., 2004, 16(13):2518-2521. [2] De G J H, Si Q, Meng G L B Q. Solvothermal synthesis and white upconversion luminescence properties of La0.789Yb0.20-Ho0.001Tm0.01F3 nanocubes[J]. Chem. J. Chin. Univ.(高等学校化学学报), 2011, 8(8):1692-1696 (in Chinese). [3] Li N N, An Z Y, Gao Y M, et al. Preparation and properties of nano-sized SrMoO4:Yb3+/Er3+ powder upconversion luminescence[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):1055-1058 (in Chinese). [4] Liang L F, Zhuang J L, Wu H, et al. White upconversion emission of hydrothermally synthesized hexagonal NaYF4:Er3+/Tm3+[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese). [5] Auzel F. Upconversion and anti-Stokes processes with fand ions in solids[J]. Chem. Rev., 2004, 104(1):139-173. [6] Zhou J, Liu Z, Li F Y. Upconversion nanophosphors for small-animal imaging[J]. Chem. Soc. Rev., 2012, 41(3):1323-1349. [7] Liu Y, Chen M, Cao T Y, et al. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury[J]. J. Am. Chem. Soc., 2013, 135(26):9869-9876. [8] Mahalingam V, Vetroni F, Naccache R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals:Multiple luminescence spanning the UV to NIR regions via low-energy excitation[J]. Adv. Mater., 2009, 21(40):4025-4028. [9] Li P, Peng Q, Li Y D. Dual-mode luminescent colloidal spheres from monodisperse rare-earth fluoride nanocrystals[J]. Adv. Mater., 2009, 21(19):1945-1948. [10] Wang G F, Peng Q, Li Y D. Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(40):14200-14201. [11] Xie T, Li S, Li Y D, et al. Monodisperse BaF2 nanocrystals: Phases, size transitions, and self-assembly[J]. Angew. Chem. Int. Ed., 2009, 48(1):196-200. [12] Wang X, Zhuang J, Li Y D, et al. Hydrothermal synthesis of rare-earth fluoride nanocrystals[J]. Inorg. Chem., 2006, 45(17):6661-6665. [13] Du Y P, Sun X, Zhang Y W, et al. Uniform alkaline earth fluoride nanocrystals with diverse shapes grown from thermolysis of metal trifluoroacetates in hot surfactant solutions[J]. Crystal Growth & Design, 2009, 9(4):2013-2019. [14] Zhang Y W, Sun X, Si R, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. J. Am. Chem. Soc., 2005, 127(10):3260-3261. [15] Mai H X, Zhang Y W, Si R, et al. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006, 128(19):6426-6436. [16] Dong N N, Pedroni M, Piccinelli F, et al. NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanoparticles: Multifunctional nanoprobes for highly penetrating fluorescence bio-imaging[J]. ACS Nano, 2011, 5(11):8665-8671. [17] Glaspell G, Anderson J, Wilkins J R, et al. Vapor phase synthesis of upconverting Y2O3 nanocrystals doped with Yb3+, Er3+, Ho3+, and Tm3+ to generate red, green, blue, and white light[J]. J. Phys. Chem. C, 2008, 112(30):11527-11531. [18] Quan Z, Yang D, Yang P, et al. Uniform colloidal alkaline earth metal fluoride nanocrystals: Nonhydrolytic synthesis and luminescence properties[J]. Inorg. Chem., 2008, 47(20):9509-9517. [19] Pang M, Liu D P, Lei Y Q, et al. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process[J]. Inorg. Chem., 2011, 50(12):5327-5329. [20] Zhang X M, Quan Z W, Yang J, et al. Solvothermal synthesis of well-dispersed MF2(M=Ca, Sr, Ba) nanocrystals and their optical properties[J]. Nanotechnol., 2008, 19(7):075603-1-5. [21] Polinau M, Gamelin D R, Lthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Phys. Rev., 2000, 61(5):3337-3346.
0
浏览量
82
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构