浏览全部资源
扫码关注微信
1. 陕西科技大学 材料科学与工程学院,陕西 西安,710021
2. 陕西科技大学 机电工程学院,陕西 西安,710021
收稿日期:2013-11-22,
修回日期:2013-12-11,
网络出版日期:2014-01-24,
纸质出版日期:2014-04-03
移动端阅览
刘盼, 殷海荣, 郭宏伟等. 光学碱度对Tb<sup>3+</sup>掺杂Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>玻璃发光性能的影响[J]. 发光学报, 2014,35(4): 413-419
LIU Pan, YIN Hai-rong, GUO Hong-wei etc. Effect of Optical Basicity on Luminescence Properties of Tb<sup>3+</sup> Doped Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> Glasses[J]. Chinese Journal of Luminescence, 2014,35(4): 413-419
刘盼, 殷海荣, 郭宏伟等. 光学碱度对Tb<sup>3+</sup>掺杂Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>玻璃发光性能的影响[J]. 发光学报, 2014,35(4): 413-419 DOI: 10.3788/fgxb20143504.0413.
LIU Pan, YIN Hai-rong, GUO Hong-wei etc. Effect of Optical Basicity on Luminescence Properties of Tb<sup>3+</sup> Doped Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> Glasses[J]. Chinese Journal of Luminescence, 2014,35(4): 413-419 DOI: 10.3788/fgxb20143504.0413.
采用熔融法制备了Tb
3+
掺杂的Bi
2
O
3
-B
2
O
3
系统玻璃,使用激发、发射及拉曼光谱分析了光学碱度与玻璃结构及发光性能的关系,同时绘制了Tb
3+
、Bi
3+
和Bi
2+
的能级图。研究结果表明:Tb
3+
掺杂的Bi
2
O
3
-B
2
O
3
玻璃由[BO
3
]、[BiO
3
]、[BO
4
]及[BiO
6
]共同组成,且随着光学碱度由0.63增加到0.93,玻璃的结构逐渐疏松。高的光学碱度使部分Bi
3+
变为Bi
2+
,发出571 nm(
2
P
3/2(2)
2
P
1/2
)的光,Bi
3+
Tb
3+
的能量降低。在光学碱度及Tb
3+
、Bi
3+
和Bi
2+
离子的共同作用下,随着光学碱度的提高,玻璃的发光颜色由黄绿色变为白色。
Tb
3+
doped Bi
2
O
3
-B
2
O
3
glasses were prepared by melting technique
and the relationship of optical basicity
luminescence properties and structure were investigated by excitation
emission and Raman spectra. Energy level structures of Tb
3+
Bi
3+
and Bi
2+
ions were plotted for the excitation and energy transfer routes. The results show that Tb
3+
doped Bi
2
O
3
-B
2
O
3
glasses consist of [BO
3
]
[BiO
3
]
[BO
4
]
and [BiO
6
] together as basic structural groups
and its structure turn looses as the optical basicity increasing from 0.63 to 0.93. Based on energy matching condition
571 nm emission ascribed to
2
P
3/2(2)
2
P
1/2
transition of Bi
2+
reduces from Bi
3+
ions at high optical basicity of glasses
which decreases the transition of Bi
3+
Tb
3+
. The luminescent properties of Tb
3+
doped Bi
2
O
3
-B
2
O
3
glasses are quite sensitive to optical basicity
the luminescence color turns to white from yellow-green with the optical basicity increasing.
Sindhu S, Sanghi S, Agarwal A, et al. Effect of Bi2O3 content on the optical band gap, density and electrical conductivity of MOBi2O3B2O3(M=Ba, Sr) glasses[J]. Mater. Chem. Phys., 2005, 90(1):83-89. [2] Insitipong S, Kaewkhao J, Ratana T, et al. Optical and structural investigation of bismuth borate glasses doped with Dy3+[J]. Procedia Engineer, 2011, 8:195-199. [3] Yousef E S, El-Adawy A, El-Kheshkhany N. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth borate system[J]. Solid State Commun., 2006, 139(1):108-113. [4] Cheng Y, Xiao H N, Guo W M, et al. Structure and crystallization kinetics of Bi2O3-B2O3 glasses[J]. Thermochim. Acta, 2006, 444(2):173-178. [5] Komatsu T, Ito N, Honma T, et al. Electronic polarizability and its temperature dependence of Bi2O3-B2O3 glasses[J]. J. Non-Cryst. Solids, 2010, 356(44-49):2310-2314. [6] Park J M, Kim H J, Kim S, et al. Luminescence property of rare-earth doped bismuth-borate glasses[J]. Procedia Engineer, 2012, 32:855-861. [7] Hughes M A, Suzuki T, Ohishi Y. Compositional dependence of the optical properties of bismuth doped lead-aluminum-germanate glass[J]. Opt. Mater., 2010, 32(9):1028-1034. [8] Ouedraogo K, Topsu S, Gayhmouni J, et al. Accurate ellipsometric magnetic-field sensor used to align the watt balance magnetic circuit of the French National Metrology Institute[J]. Sens. Actuat. A: Phys., 2012, 175:9-14. [9] Rambabu U, Munirathnam N, Chatterjee S, et al. Influence of Bi3+ as a sensitizer and SiO2 shell coating as a protecting layer towards the enhancement of red emission in LnVO4:Bi3+, Eu3+ @SiO2 (Ln=Gd, Y and Gd/Y) powder phosphors for optical display devices[J]. Ceram. Int., 2013, 39(5):4801-4811. [10] Duffy J A. Redox equilibria in glass[J]. J. Non-Cryst. Solids, 1996, 196:45-50. [11] Ren J J, Yang L Y, Qiu J R, et al. Effect of various alkaline-earth metal oxides on the broadband infrared luminescence from bismuth-doped silicate glasses[J]. Solid State Commun., 2006, 140(1):38-41. [12] Zhao S L, Xin F X, Xu S Q, et al. Luminescence properties and energy transfer of Eu/Tb ions codoped aluminoborosilicate glasses[J]. J. Non-Cryst. Solids, 2011, 357(11):2424-2427. [13] Pal Singh G, Kaur P, Kaur S, et al. Investigation of structural, physical and optical properties of CeO2-Bi2O3-B2O3 glasses[J]. Physica B, 2012, 407(21):4168-4172. [14] Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. Ⅰ[J]. J. Appl. Phys., 1996, 79(3):1736-1740. [15] Zhao X Y, Wang X L, Lin H, et al. Electronic polarizability and optical basicity of lanthanide oxides[J]. Physica B, 2007, 392(1-2):132-136. [16] Stefan R, Pascuta P, Popa A, et al. XRD and EPR structural investigation of some zinc borate glasses doped with iron ions[J]. J. Phys. Chem. Solids, 2012, 73(2):221-226. [17] Vinaya Teja P M, Rajyasree C, Murali Krishna S B, et al. Effect of some VA group modifiers on R2O3(R=Sb, Bi)-ZnF2-GeO2 glasses doped with CuO by means of spectroscopic and dielectric investigations[J]. Mater. Chem. Phys., 2012, 133(1):239-248. [18] Pal I, Sanghi S, Agarwal A, et al. Spectroscopic and structural investigations of Er3+ doped zinc bismuth borate glasses[J]. Mater. Chem. Phys., 2012, 133(1):151-158. [19] Bale S, Rahman S, Awasthi A M, et al. Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3-ZnO-B2O3 glasses[J]. J. Alloys Compd., 2008, 460(1-2):699-703. [20] Baia L, Stefan R, Kiefer W, et al. Structural investigations of copper doped B2O3-Bi2O3 glasses with high bismuth oxide content[J]. J. Non-Cryst. Solids, 2002, 303(3):379-386. [21] He F, Wang J, Deng D W. Effect of Bi2O3 on structure and wetting studies of Bi2O3-ZnO-B2O3 glasses[J]. J. Alloys Compd., 2011, 509(21):6332-6336. [22] Suresh S, Gayathri Pavani P, Chandra Mouli V. ESR, optical absorption, IR and Raman studies of xTeO2+(70-x) B2O3+ 5TiO2+24R2O:1CuO(x=10, 35 and 60mol%; R=Li, Na and K) quaternary glass system[J]. Mater. Res. Bull., 2012, 47(3):724-731. [23] Yang C H, Yuan J H, Zeng X Y. Comparison and analysis of laser raman spectra of common drinking water[J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2007, 27(10):2053-2056 (in Chinese). [24] Subhadra M, Kistaiah P. Infrared and Raman spectroscopic studies of alkali bismuth borate glasses: Evidence of mixed alkali effect[J]. Vib. Spectrosc., 2012, 62:23-27. [25] Hamstra M A, Folkerts H F, Blasse G. Materials chemistry communications. Red bismuth emission in alkaline-earth-metal sulfates[J]. J. Mater. Chem., 1994, 4(8):1349-1350. [26] Wang X, Zhou S F, Bao J X. Infrared broadband emission of bismuth-doped RO-B2O3(R=Ca, Sr, Ba) glasses[J]. J. Wuhan Univ. Technol., 2007(S1):841-843. [27] Blasse G, Bril A. Investigations on Bi3+-activated phosphors[J]. J. Chem. Phys., 1968, 48:217-222. [28] Xu B B, Hao J, Zhou S, et al. Ultra-broadband infrared luminescence of Bi-doped thin-films for integrated optics[J]. Opt. Exp., 2013, 21(15):18532-18537. [29] Chen D, Yu Y L, Huang P, et al. Optical spectroscopy of Eu3+ and Tb3+ doped glass ceramics containing LiYbF4 nanocrystals[J]. Appl. Phys. Lett., 2009, 94(4):041909-1-3. [30] Yang L, Li Y, Xiao Y H, et al. Synthesis of Tb3+-doped ZnO nanowire arrays through a facile sol-gel template approach[J]. Chem. Lett., 2005, 34(6):828-829. [31] Ratnakaram Y C, Vijaya Kumar A, Tirupathi Naidu D, et al. Absorption and emission properties of Nd3+ in lithium cesium mixed alkali borate glasses[J]. Solid State Commun., 2005, 136(1):45-50. [32] Zhang L L, Peng M Y, Dong G P, et al. An investigation of the optical properties of Tb3+-doped phosphate glasses for green fiber laser[J]. Opt. Mater., 2012, 34(7):1202-1207. [33] Meng X G, Qiu J R, Peng M Y, et al. Near infrared broadband emission of bismuth-doped aluminophosphate glass[J]. Opt. Exp., 2005, 13(5):1628-1634.
0
浏览量
180
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构