浏览全部资源
扫码关注微信
1. 吉林大学 物理学院,吉林 长春,130021
2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
3. 中国科学院大学 北京,100049
收稿日期:2013-09-25,
修回日期:2014-02-17,
网络出版日期:2014-01-28,
纸质出版日期:2014-04-03
移动端阅览
赵鹏程, 张振中, 姚斌等. 通过交替生长气氛调控N掺杂ZnO薄膜电学特性[J]. 发光学报, 2014,35(4): 399-403
ZHAO Peng-cheng, ZHANG Zhen-zhong, YAO Bin etc. p-type Doping of ZnO:N Thin Fims by Alternating The Growth Atmosphere[J]. Chinese Journal of Luminescence, 2014,35(4): 399-403
赵鹏程, 张振中, 姚斌等. 通过交替生长气氛调控N掺杂ZnO薄膜电学特性[J]. 发光学报, 2014,35(4): 399-403 DOI: 10.3788/fgxb20143504.0399.
ZHAO Peng-cheng, ZHANG Zhen-zhong, YAO Bin etc. p-type Doping of ZnO:N Thin Fims by Alternating The Growth Atmosphere[J]. Chinese Journal of Luminescence, 2014,35(4): 399-403 DOI: 10.3788/fgxb20143504.0399.
使用分子束外延方法在
c
面蓝宝石衬底上生长了系列氮掺杂ZnO薄膜样品。在连续的富锌气氛环境中生长的样品,由于存在大量的施主缺陷,呈现n型电导。为了抑制施主缺陷带来的补偿效应,在生长过程中,通过周期性补充氧气,形成周期性的富氧气氛,缓解了氮掺杂浓度和施主缺陷浓度之间的矛盾。光致发光测量表明,通过交替生长气氛,氧空位和锌间隙等缺陷在薄膜中得到了显著抑制。通过交替生长气氛生长的外延薄膜的结晶质量也有所提高。样品显示出重复性较高的p型电导,载流子浓度可达到10
16
cm
-3
。周期性补氧调节生长气氛的生长方式是一种有效实现p型掺杂ZnO的方法。
A series of nitrogen-doped zinc oxide (ZnO:N) thin films were grown on
c
-plane sapphire substrate by plasma-assisted molecular beam epitaxy. Due to the large number of donor defects
the samples grown in the continuous zinc-rich atmosphere showed n-type conductivity. In order to suppress the compensation effect caused by donor defects
by periodically supplying oxygen during the growth and then alternating the growth atmosphere in the growth process
the conflict between nitrogen doping level and intrinsic defects was relaxed partly. Compared to the case without supplying oxygen
the crystal quality of the thin films was improved. And the photoluminescence measurements showed that the oxygen vacancy and the zinc interstitial defects in the thin films were suppressed significantly. The samples showed a high repeatability of p-type conductivity. The carrier concentration of the samples grown by alternating the growth atmosphere can reach 10
16
cm
-3
. This may be an effective method to realize the p-type doped ZnO.
Look D C. Recent advances in ZnO materials and devices[J]. Mater. Sci. Eng. B, 2001, 80(1-3):383-387. [2] Ozgur U, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys., 2005, 98(4):041301-1-3. [3] Osinsky A, Dong J W, Chernyak L, et al. MgZnO/AlGaN heterostructure light-emitting diodes[J]. Appl. Phys. Lett., 2004, 85(19):4272-4274. [4] Pauporte T, Lincot D, Pelle F, et al. Toward laser emission of epitaxial nanorod arrays of ZnO grown by electrodeposition[J]. Appl. Phys. Lett., 2006, 89(23):233112-1-3. [5] Look D C, Reynolds D C, Litton C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2002, 81(10):1830-1832. [6] Li X, Yan Y, Gessert T A, et al. Chemical vapor deposition-formed p-type ZnO thin films[J]. J. Vac. Sci. Technol. A, 2003, 21(4):1342-1346. [7] Sun J C, Zhao J Z, Liang H W, et al. Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure[J]. Appl. Phys. Lett., 2007, 90(12):121128-1-3. [8] Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy[J]. Appl. Phys. Lett., 2005, 87(15):152101-1-3. [9] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B, 2002, 66(7):073202-1-3. [10] Liu L, Xu J L, Wang D D, et al. p-type conductivity in N-doped ZnO: The role of the NZn-VO complex[J]. Phys. Rev. Lett., 2012, 108(21):215501-1-3. [11] Reynolds J G, Reynolds C L, Mohanta A, et al. Shallow acceptor complexes in p-type ZnO[J]. Appl. Phys. Lett., 2013, 102(15):152114-1-3. [12] Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO[J]. Phys. Rev. Lett., 1999, 82(12):2552-2555. [13] Tsukazaki A, Onuma T, Ohtani M, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nat. Mater., 2005, 4(1):42-46. [14] Barnes T M, Olsonandand K, Wolden C A. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett., 2005, 86(11):112112-1-3. [15] Zeng H B, Duan G T, Li Y, et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls[J]. Adv. Funct. Mater., 2010, 20(4):561-572. [16] Samanta P K, Mishra S. Wet chemical growth and optical property of ZnO nanodiscs[J]. Optik, 2013, 124(17):2871-2873. [17] Bera A, Ghosh T, Basak D. Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn[J]. ACS Appl. Mater. Interf., 2010, 2(10):2898-2903. [18] Mandalapu L J, Xiu F X, Yang Z, et al. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy[J]. Solid State Electron., 2007, 51(7):1014-1017. [19] Look D C, Claflin B. P-type doping and devices based on ZnO[J]. Phys. Stat. Sol. B, 2004, 241(3):624-630. [20] Przezdziecka E, Kaminska E, Korona K P, et al. Photoluminescence study and structural characterization of p-type ZnO doped by N and/or As acceptors[J]. Semicond. Sci. Technol., 2007, 22(2):10-14.
0
浏览量
99
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构