浏览全部资源
扫码关注微信
1. 中国科学院深圳先进技术研究院 中国科学院香港中文大学深圳先进集成技术研究所 光伏太阳能研究中心,广东 深圳,518055
2. 中国科学技术大学 纳米科学技术学院,江苏 苏州,215123
收稿日期:2013-12-03,
修回日期:2014-01-06,
纸质出版日期:2014-04-03
移动端阅览
宋秋明, 吕明昌, 谭兴等. H/Al共掺杂对ZnO基透明导电薄膜光电性质和晶体结构的影响[J]. 发光学报, 2014,35(4): 393-398
SONG Qiu-ming, LYU Ming-chang, TAN Xing etc. Influence of H/Al Co-doping on Eletrical and Optical Properties and Crystal Structure of ZnO-based Transparent Conducting Films[J]. Chinese Journal of Luminescence, 2014,35(4): 393-398
宋秋明, 吕明昌, 谭兴等. H/Al共掺杂对ZnO基透明导电薄膜光电性质和晶体结构的影响[J]. 发光学报, 2014,35(4): 393-398 DOI: 10.3788/fgxb20143504.0393.
SONG Qiu-ming, LYU Ming-chang, TAN Xing etc. Influence of H/Al Co-doping on Eletrical and Optical Properties and Crystal Structure of ZnO-based Transparent Conducting Films[J]. Chinese Journal of Luminescence, 2014,35(4): 393-398 DOI: 10.3788/fgxb20143504.0393.
利用H在ZnO中作为浅施主杂质的特性,研究了H掺杂对ZnO:Al透明导电薄膜特性的影响。通过降低ZnO:Al中Al的含量并同时引入H掺杂,解决了透明导电薄膜中高导电性与高透过率之间的矛盾。H的掺杂可以显著降低ZnO基透明导电薄膜的电阻率,这是由于H一方面作为施主可以提供电子从而提高了自由载流子浓度;另一方面与ZnO晶界中的O
-
结合降低了晶界势垒,提高了载流子迁移率。利用H掺杂,可以在Al掺杂量降低10倍的情况下,仍然能获得低电阻率(6.310
-4
cm)的透明导电薄膜,同时其近红外波段(1 200 nm)透光率从64%提高到90%。这种具有高导电性和高透光性的透明导电薄膜可以应用于各类薄膜太阳能电池中以提升器件效率。
By incorporating suitable amount of H dopants and lowering the Al contents
the conflicts between low resistivity and high transmission in transparent conducting films have been successfully solved. The reduced resistivity of ZnO:Al films by hydrogen doping is attributed to the increased carrier density and carrier mobility. Hydrogen behaves as a shallow donor in ZnO and can provide plenty of electrons. Most importantly
it can increase the carrier mobility effectively by lowering the potential barrier between ZnO grains due to the passivation of O
-
defects around grain boundaries. The carrier mobility can also be increased due to the less impurity scattering induced by the lowering of Al dopants in ZnO films. With hydrogen doping
low resistivity (6.310
-4
cm) ZnO:Al samples with only 1/10 of Al contents compared to conventional AZO films can be got. The optical transmittance in near infrared region(1 200 nm) increases from 64% to 90% by comparing samples without and with H-doping is shown. This kind of high conductivity and high transmittance ZnO thin film will be excellent transparent conducting oxide candidate for various types of thin-film solar cells to improve the efficiency of the device.
Song Q M, Wu B J, Xie B, et al. Resputtering of zinc oxide films prepared by radical assisted sputtering[J]. J. Appl. Phys., 2009, 105(4):044509-1-6. [2] Meng F Y, Jiang M L, Yu Y B, et al. Characteristics and growth of ZnO:B thin films by MOCVD process[J]. Acta Energy Sol. Sinica (太阳能学报), 2008, 29(8):939-943 (in Chinese). [3] Wienke J, Booij A S. ZnO:In deposition by spray pyrolysisInfluence of the growth conditions on the electrical and optical properties[J]. Thin Solid Films, 2008, 516(14):4508-4512. [4] Jun M C, Park S U, Koh J H. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films[J]. Nanoscale Res. Lett., 2012, 7(1):639-644. [5] Zhang K, Yang C L, Yin L, et al. Fabricating highly efficient Cu(In, Ga)Se2 solar cells at low glass-substrate temperature by active gallium grading control[J]. Sol. Energy Mater. Sol. Cells, 2014, 120:253-258. [6] Oh B Y, Jeong M C, Moon T H, et al. Transparent conductive Al-doped ZnO films for liquid crystal displays[J]. J. Appl. Phys., 2006, 99(12):124505-1-4. [7] Agashe C, Kluth O, Hupkes J, et al. Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films[J]. J. Appl. Phys., 2006, 95(4):1911-1917. [8] Pern F J, Mansfield L, DeHart C, et al. Thickness effect of Al-doped ZnO window layer on damp heat stability of CuInGaSe2 solar cells[C]//37th IEEE Photovoltaic Specialists Conference (PVSC 37), Seattle, Washington: IEEE, 2011:1-8. [9] Ghosh T, Basak D. Enhanced mobility in visible-to-near infrared transparent Al-doped ZnO films[J]. Solar Energy, 2013, 96:152-158. [10] Pankove J I. Optical Processes in Semiconductors[M]. New York: Dover Publications, 1971:74-76. [11] Platzer-Bjrkman C, Hultqvist A, Pettersson J, et al. Band gap engineering of ZnO for high efficiency CIGS based solar cells[J]. SPIE, 2010, 7603:76030F-1-9. [12] Probst V, Stetter W, Riedl W, et al. Rapid CIS-process for high efficiency PV-modules: Development towards large area processing[J]. Thin Solid Films, 2001, 387(1-2):262-267. [13] Palm J, Probst V, Brummer A, et al. CIS module pilot processing applying concurrent rapid selenization and sulfurization of large area thin film precursors[J]. Thin Solid Films, 2003, 431-432:514-522. [14] Gaskov A M, Rumyantseva M N. Nature of gas sensitivity in nanocrystalline metal oxides[J]. Rus. J. Appl. Chem., 2001, 74(3):440-444. [15] Chris G. Van de Walle. Hydrogen as a cause of doping in zinc oxide[J]. Phy. Rev. Lett., 2000, 85(5):1012-1015. [16] Kang Y S, Kim H Y, Lee J Y. Effects of hydrogen on the structural and electro-optical properties of zinc oxide thin films[J]. J. Electrochem. Soc., 2000, 147(12):4625-4629. [17] Liu W F, Du G T, Sun Y F, et al. Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering:H2-induced property changes[J]. Thin Solid Films, 2007, 515(5):3057-3060. [18] Lee S H, Lee T S, Lee K S, et al. Characteristics of hydrogen co-doped ZnO:Al thin films[J]. J. Phys. D: Appl. Phys., 2008, 41(9):095303-1-7. [19] Kilic C, Zunger A. n-type doping of oxides by hydrogen[J]. Appl. Phys. Lett., 2002, 81(1):73-75. [20] An L S, Lu Y W, Wronski C R, et al. Real time spectroellipsometry study of the interaction of hydrogen with ZnO during ZnO/aSi1-xCxH interface formation[J]. Appl. Phys. Lett., 1994, 64(24):3317-3319. [21] Ohta Y, Haga T, Abe Y. Crystallographic features of ZnO single crystals[J]. Jpn. J. Appl. Phys., 1997, 36:L1040-L1042. [22] Mahan G D. Intrinsic defects in ZnO varistors[J]. J. Appl. Phys, 1983, 54(7):3825-3832. [23] Bang S H, Lee S J, Park J Y, et al. Investigation of the effects of interface carrier concentration on ZnO thin film transistors fabricated by atomic layer deposition[J]. J. Phys. D: Appl. Phys., 2009, 42(23):235102-1-6.
0
浏览量
99
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构