浏览全部资源
扫码关注微信
1. 中北大学 仪器科学与动态测度教育部重点实验室, 电子测试技术国家重点实验室,山西 太原,030051
2. 中北大学 材料科学与工程学院,山西 太原,030051
3. 清华大学 新型陶瓷与精细工艺国家重点实验室 北京,100084
收稿日期:2013-09-24,
修回日期:2013-11-25,
纸质出版日期:2014-03-03
移动端阅览
赵清, 常青, 杨金龙等. 碳点嫁接海藻酸钙复合结构的制备及其对Cu<sup>2+</sup>的检测[J]. 发光学报, 2014,35(3): 387-392
ZHAO Qing, CHANG Qing, YANG Jin-long etc. Preparation of Complex Carbon-dot-grafted Calcium Alginate and Its Application as Fluorescent Sensor for Cu<sup>2+</sup>[J]. Chinese Journal of Luminescence, 2014,35(3): 387-392
赵清, 常青, 杨金龙等. 碳点嫁接海藻酸钙复合结构的制备及其对Cu<sup>2+</sup>的检测[J]. 发光学报, 2014,35(3): 387-392 DOI: 10.3788/fgxb20143503.0387.
ZHAO Qing, CHANG Qing, YANG Jin-long etc. Preparation of Complex Carbon-dot-grafted Calcium Alginate and Its Application as Fluorescent Sensor for Cu<sup>2+</sup>[J]. Chinese Journal of Luminescence, 2014,35(3): 387-392 DOI: 10.3788/fgxb20143503.0387.
基于铜离子与碳点的荧光猝灭作用,建立了用碳点作为荧光探针来检测铜离子的新方法。该方法将碳点还原后再嫁接于海藻酸钙,从而得到一种新型的含还原碳点的海藻酸钙薄膜荧光探针。用荧光分光光度计和紫外-可见分光光度计对探针的荧光特性以及探针与金属离子的相互作用进行了研究。研究结果表明:改性后的荧光探针具有很高的荧光强度,因此可以根据探针荧光强度的变化实现对铜离子的检测,并通过乙二胺四乙酸二钠(EDTA)的作用实现对铜离子的重复检测。铜离子浓度在510
-6
~10010
-6
molL
-1
范围内与该荧光探针的荧光猝灭强度呈良好的线性关系。该方法不仅可以对铜离子检测,更实现了对碳点的固载,该技术有望实现荧光探针的回收再利用。
A novel method for detecting Cu
2+
ion was developed based on the fluorescence quenching effect of copper ion on carbon dots (CDs). The fluorescent probe was prepared by grafting reduced carbon dots (rCDs) in calcium alginate to form a calcium alginate film (CA-rCDs). Fluorescence characteristics of the probe and interaction between the probe and metal ions were studied using fluorescence spectrophotometer and UV-Vis spectrophotometer. The results show that the fluorescence intensity of the novel probe is strong and varied with the concentration of Cu
2+
. Moreover
the quenched fluorescence intensity of probe is linearly proportional to the concentration of Cu
2+
in the range from 510
-6
to 10010
-6
molL
-1
. In addition
it is found that the probe can detect Cu
2+
repeatedly by using EDTA. This method is not only suitable for the detection of Cu
2+
but also can realize the immobilization of CDs
ensuring the probe to be recycled and reused.
Barnham K J, Masters C L, Bush A I. Neurodegenerative diseases and oxidative stress[J]. Nat. Rev. Drug. Discov., 2004, 3(3):205-214. [2] Huang Q, Zhu W J, Yang L L, et al. Synthesis and properties of a new 4-aminoantipyrine Schiff-base for selective recognition of Cu2+[J]. Chin. J. Lumin.(发光学报), 2013, 34(9):1144-1148 (in Chinese). [3] Georgopoulos P G, Roy A, Yonone-Lioy M J, et al. Environmental copper: Its dynamics and human exposure issues[J]. J. Toxicol. Env. Heal. B, 2001, 4(4):341-394. [4] Ray S C, Saha A, Jana N R, et al. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application[J]. J. Phys. Chem. C, 2009, 113(43):18546-18551. [5] Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011, 49(2):605-609. [6] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots[J]. Small, 2008, 4(4):455-458. [7] Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J]. Anal.Chem., 2012, 84(14):6220-6224. [8] Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices[J]. Chem. Commun., 2012, 48(8):1147-1149. [9] Li H, Zhai J, Sun X. Sensitive and selective detection of silver (Ⅰ) ion in aqueous solution using carbon nanoparticles as a cheap, effective fluorescent sensing platform[J]. Langmuir, 2011, 27(8):4305-4308. [10] Zhang P, Li Y H, Du Q J, et al. Adsorption of copper ions from aqueous solution by alginate/porous silicon composite material[J]. J. Qingdao Univ.(青岛大学学报), 2011, 24(1):42-47 (in Chinese). [11] Li Y, Liu F, Xia B, et al. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites[J]. J. Hazard. Mater., 2010, 177(1-3):876-880. [12] Hu S L, Tian R X, Wu L L, et al. Chemical regulation of carbon quantum dots from synthesis to photocatalytic activity[J]. Chem. Asian J., 2013, 8(5):1035-1041. [13] Ma P, Zhu L, Sun S Y, et al. Preparation and pH-sensitive reswelling of calcium alginate gel beads[J]. Chin. J. Marine Drugs (中国海洋药物), 2003, 5:35-37 (in Chinese). [14] Dong Y, Wang R, Li H, et al. Polyamine-functionalized carbon quantum dots for chemical sensing[J]. Carbon, 2012, 50(8):2810-2815. [15] Zheng H, Wang Q, Long Y, et al. Enhancing the luminescence of carbon dots with a reduction pathway[J]. Chem. Commun., 2011, 47(38):10650-10652. [16] Hu S L, Guo Y, Dong Y G, et al. Understanding the effects of the structures on the energy gaps in carbon nanoparticles from laser synthesis[J]. J. Mater. Chem., 2012, 22:12053-12057. [17] Hu S L, Dong Y G, Yang J L, et al. One-step synthesis of graphitic nanoplatelets that are decorated with luminescent carbon nanoparticles as new optical-limiting materials[J]. Chem. Asian J., 2012, 7:2711-2717. [18] Hu S L, Niu K Y, Sun J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation[J]. J. Mater. Chem., 2009, 19:484-488. [19] Hou M, Na J, Shen K. Determination of sparfloxacin with CdTe/CdS quantum dots as fluorescence probes[J]. J. Acta Chim. Sinica (化学学报), 2010, 68:1437-1442 (in Chinese). [20] Li H, Qu F. Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix arene as luminescent probes for pesticides[J]. Chem. Mater., 2007, 19(17):4148-4154. [21] Koneswaran M, Narayanaswamy R. Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury (Ⅱ)[J]. Sens. Actuat. B: Chem., 2009, 139(1):91-96. [22] Wang H J, Zhang W Z, He C, et al. Synthesis of fluorescent probe based on FRET and its appalication in the determination for Hg2+[J]. Chin.J.Lumin.(发光学报), 2012, 33(9):1030-1036 (in Chinese). [23] Su Z H, Wang Y J, Zhao H, et al. Determination of trace copper(Ⅱ) using CdS quantum dots as a fluorescence probe[J]. Chin. J. Appl. Chem.(应用化学), 2011, 28:842-848 (in Chinese). [24] Chen X, Pradhan T, Wang F, et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chem. Rev., 2012, 112(3):1910-1956. [25] Chen X, Jou M J, Lee H, et al. New fluorescent and colorimetric chemosensors bearing rhodamine and binaphthyl groups for the detection of Cu2+[J]. Sens. Actuat. B: Chem., 2009, 137(2):597-602.
0
浏览量
87
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构