浏览全部资源
扫码关注微信
热带岛屿资源先进材料教育部重点实验室 海南大学, 海南 海口 570228
收稿日期:2013-10-12,
修回日期:2013-11-09,
纸质出版日期:2014-03-03
移动端阅览
王鑫泽, 高鸿健, 刘婧等. 球磨法对不同基质上转换发光的影响[J]. 发光学报, 2014,35(3): 312-316
WANG Xin-ze, GAO Hong-jian, LIU Jing etc. Up-conversion for Different Substrate by Ball Milling Method[J]. Chinese Journal of Luminescence, 2014,35(3): 312-316
王鑫泽, 高鸿健, 刘婧等. 球磨法对不同基质上转换发光的影响[J]. 发光学报, 2014,35(3): 312-316 DOI: 10.3788/fgxb20143503.0312.
WANG Xin-ze, GAO Hong-jian, LIU Jing etc. Up-conversion for Different Substrate by Ball Milling Method[J]. Chinese Journal of Luminescence, 2014,35(3): 312-316 DOI: 10.3788/fgxb20143503.0312.
分别利用高温固相法和高能球磨法,在反应温度为1 100 ℃、反应时间为2 h的条件下合成了以Y
2
O
3
、La
2
O
3
、LiTaO
3
为基质的双掺和三掺Tm
3+
、Er
3+
、Yb
3+
发光粉。XRD测试结果表明,高能球磨法制备的Y
2
O
3
、La
2
O
3
、LiTaO
3
材料的相纯度高于高温固相法。用980 nm红外激光分别对两种合成方法制得的样品粉末进行发光性质的检测,结果表明高能球磨法制得样品的发光强度高于高温固相法样品。不同基质样品的上转换发光性质表现为:Tm
3+
、Yb
3+
掺杂呈蓝光;Er
3+
、Yb
3+
掺杂呈黄光;Tm
3+
、Er
3+
、Yb
3+
三掺样品的发光减弱,颜色可调。
Up-conversion luminescence powders were synthesized by high-energy ball-milling (HEB) method and the conventional solid-state reaction (SSR) method. All the phosphors were sintered at 1 100 ℃ for 2 h. X-ray powder diffraction (XRD) shows that the HEB samples have higher phase purity and crystallinity compared with the SSR samples. Excited by 980 nm laser
the HEB samples show higher photoluminescence (PL) intensity. Tm
3+
Yb
3+
co-doped sample emits yellow light
Er
3+
Yb
3+
co-doped sample emits green light
and the luminous intensity of Tm
3+
Er
3+
Yb
3+
co-doped sample is weaken and the color is tunable.
Mahalingam V, Vetrone F, Naccache R, et al. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation[J]. Adv. Mater., 2009, 21(40):4025-4028. [2] Mahalingam V, Mangiarini F, Vetrone F, et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals[J]. J. Phys. Chem. C, 2008, 112(46):17745-17749. [3] Wang R, Liu L, Sun J, et al. Blue upconversion luminescence in 12CaO7Al2O3:Tm3+/Yb3+ polycrystals[J]. Opt. Commun., 2012, 285(6):957-959. [4] Wang J S, Vogel E M, Snitzer E, et al. 1.3 m emission of neodymium and praseodymium in tellurite-based glasses[J]. J. Non-cryst. Solids, 1994, 178:109-113. [5] Luo X, Cao W. Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor[J]. Mater. Lett., 2007, 61(17):3696-3700. [6] Chen D, Wang Y, Bao F, et al. Broadband near-infrared emission from Tm/Er co-doped nanostructured glass ceramics[J]. J. Appl. Phys., 2007, 101(11):113511-1-6. [7] Shah B K, Neckers D C, Shi J, et al. Anthanthrene derivatives as blue emitting materials for organic light-emitting diode applications[J]. Chem. Mater., 2006, 18(3):603-608. [8] O'Farrell N, Houlton A, Horrocks B R. Silicon nanoparticles:Applications in cell biology and medicine[J]. Int. J. Nanomed., 2006, 1(4):451-472. [9] Zhang L, Zhu Y J. Microwave hydrothermal synthesis of hexagonal NaYF4 and Yb3+, Er3+-doped NaYF4 microtubes[J]. J. Inorg. Mater.(无机材料学报), 2009, 24(3):553-558 (in Chinese). [10] Liu Z, Yu A, Lee J Y. Cycle life improvement of LiMn2O4 cathode in rechargeable lithium batteries[J]. J.Power Sources, 1998, 74(2):228-233. [11] Obrovac M N, Mao O, Dahn J R. Structure and electrochemistry of LiMO2 (M=Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis[J]. Solid State Ionics, 1998, 112(1):9-19. [12] Chen H, Wang J M, Pan T, et al. Effects of high-energy ball milling (HEBM) on the structure and electrochemical performance of nickel hydroxide[J]. Int. J. Hydrogen Energy, 2003, 28(1):119-124. [13] Yang H K, Jeong J H. Synthesis, crystal growth, and photoluminescence properties of YAG:Eu3+ phosphors by high-energy ball milling and solid-state reaction[J]. J. Phys. Chem. C, 2009, 114(1):226-230. [14] Liang L F, Zhuang J L, Wu H, et al. White up-conversion emission of hydrothermally synthesized hexagonal NaYbF4:Er3+/Tm3+[J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese). [15] Zhang P X, Hang Y, Gong J, et al. Growth, optical characterization and evaluation of laser properties of Yb3+, Mg2+:LiTaO3 crystal[J]. J. Cryst. Growth, 2012, 364:57-61. [16] Hatanaka T, Nakamura K, Taniuchi T, et al. Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3[J]. Opt. Lett., 2000, 25(9):651-653. [17] Imbrock J, Wevering S, Buse K, et al. Nonvolatile holographic storage in photorefractive lithium tantalate crystals with laser pulses[J]. J. Opt. Sci. Am. B, 1999, 16(9):1392-1397. [28] Wang Y, Jiang Y J. Crystal orientation dependence of piezoelectric properties in LiNbO3 and LiTaO3[J]. Opt. Mater., 2003, 23(1-2):403-408.
0
浏览量
210
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构