浏览全部资源
扫码关注微信
长春理工大学 理学院, 吉林 长春 130022
收稿日期:2013-09-12,
修回日期:2013-10-09,
纸质出版日期:2014-03-03
移动端阅览
王许杰, 方芳, 楚学影等. 自支撑Ag掺杂ZnO花状纳米线阵列及其光学性质[J]. 发光学报, 2014,35(3): 306-311
WANG Xu-jie, FANG Fang, CHU Xue-ying etc. Flower-like Self-supporting Ag-doped ZnO Nanoarrays and Their Optical Properties[J]. Chinese Journal of Luminescence, 2014,35(3): 306-311
王许杰, 方芳, 楚学影等. 自支撑Ag掺杂ZnO花状纳米线阵列及其光学性质[J]. 发光学报, 2014,35(3): 306-311 DOI: 10.3788/fgxb20143503.0306.
WANG Xu-jie, FANG Fang, CHU Xue-ying etc. Flower-like Self-supporting Ag-doped ZnO Nanoarrays and Their Optical Properties[J]. Chinese Journal of Luminescence, 2014,35(3): 306-311 DOI: 10.3788/fgxb20143503.0306.
利用简单、温和的二步水浴法制备一种大面积自支撑、可自由迁移的Ag掺杂ZnO花状纳米线阵列。通过场发射扫描电子显微镜(FESEM)、元素能谱(EDS)、X射线衍射谱(XRD)、室温和变温光致发光谱(PL)等一系列表征手段对所制备的自支撑Ag掺杂ZnO纳米线阵列进行了研究。研究结果显示:这种自支撑纳米材料具有良好的晶体质量和光学性质,在低温(85 K)下显示出A
0
X和FA为主导的受主相关发射峰,通过理论公式计算受主结合能为118 meV。在变温光致发光光谱中,FA发射峰位随温度的变化符合理论模型。
By using a simple and mild two-step water-bath method
a large area of flower-like self-supporting Ag-doped ZnO nanoarrays were fabricated. Field emission scanning electron microscopy (FESEM)
energy dispersive X-ray spectrometer (EDS)
X-ray diffraction (XRD)
room temperature and temperature depend photoluminescence (PL) were used to characterize the morphology
crystalline quality and optical properties of the samples. The emission related to acceptor located at 3.360 eV and 3.315 eV can be observed at low temperature (85 K)
and the theoretical calculated acceptor binding energy is 118 meV. In temperature depend PL spectra
the calculated values of FA emission agree well with the theoretical model.
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. [2] Fang F, Zhao D X, Li B H, et al. Surface reconstruction of ZnO nanowire arrays via solvent-evaporation-induced self-assembly[J]. Appl. Surf. Sci., 2011, 257(8):3374-3375. [3] Alammar T, Mudring A V. Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid[J]. Mater. Lett., 2009, 63(9-10):732-733. [4] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells[J]. Nat. Mater., 2005, 4(6):455-459. [5] Fang F, Zhao D X, Li B H, et al. The enhancement of ZnO nanowalls photoconductivity induced by CdS nanoparticle modification[J]. Appl. Phys. Lett., 2008, 93(23):233115-1-3. [6] Liu K W, Sakurai M, Aono M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010, 10(9):8604-8634. [7] Pol F V D. Thin-film ZnO-properties and applications[J]. Ceram. Bull., 1990, 69(12):1959-1965. [8] Wardle M G, Goss J P, Briddon P R. Theory of Li in ZnO: A limitation for Li-based p-type doping[J]. Phys. Rev. B, 2005, 71(15):15205-1-10. [9] Park C H, Zhang S B, Wei S H. Origin of p-type doping difficulty in ZnO: The impurity perspective[J]. Phys. Rev. B, 2002, 66(7):073202-1-3. [10] Yan Y, Al Jassim M M, Wei S H. Doping of ZnO by group-IB elements[J]. Appl. Phys. Lett., 2006, 89(18):181912-1-3. [11] Kang H S, Ahn B D, Kim J H, et al. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant[J]. Appl. Phys. Lett., 2006, 88(20):202108-1-3. [12] Thomas M A, Cui J B. Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO[J]. J. Appl. Phys., 2009, 105(9):093533-1-5.. [13] Wang G P, Chu S, Zhan N, et al. Synthesis and characterization of Ag-doped p-type ZnO nanowires[J]. Appl. Phys. A, 2011, 103(4):951-954. [14] Wang L S, Tsan D, Stoeber B, et al. Substrate-free fabrication of self-supporting zno nanowire arrays[J]. Adv. Mater., 2012, 24(29):3999-4004. [15] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Adv. Mater., 2003, 15(5):464-466. [16] Han L, Xu Z K, Wang P, et al. Facile synthesis of a free-standing Ag@AgCl film for a high performance photocatalyst and photodetector[J]. Chem. Commun., 2013, 49(43):4953-4955. [17] Xu S, Wang Z L. One-dimensional ZnO nanostructures: Solution growth and functional properties[J]. Nano Res., 2011, 4(11):1013-1098. [18] Fan F R, Ding Y, Liu D Y, et al. Facet-selective epitaxial growth of heterogeneous nanostructures of semiconductor and metal: ZnO nanorods on Ag nanocrystals[J]. J. Am. Chem. Soc., 2009, 131(34):12036-12037. [19] Lupan O, Chow L, Ono L K, et al. Synthesis and characterization of Ag-or Sb-doped ZnO nanorods by a facile hydrothermal route[J]. J. Phys. Chem. C, 2010, 114(29):12401-12408. [20] Fang X, Li J H, Zhao D X, et al. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method[J]. J. Phys. Chem. C, 2009, 113(50):21208-21212. [21] Fang F, Zhao D X, Fang X. et al. Optical and electrical properties of individual p-type ZnO microbelts with Ag dopant[J]. J. Mater. Chem., 2011, 21(14):14979-14983. [22] Thomas M A, Cui J B. Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO[J]. J. Appl. Phys., 2009, 105(9):093533-1-5. [23] Chen X Y, Li J H, Sun Z H, et al. The formation and acceptor related emission behavior of ZnO/ZnAl2O4 core-shell structures[J].J. Alloys Compd., 2013, 571(26):116-117.
0
浏览量
191
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构