浏览全部资源
扫码关注微信
南京工业大学 材料科学与工程学院, 江苏 南京 210009
收稿日期:2013-11-12,
修回日期:2013-12-15,
纸质出版日期:2014-03-03
移动端阅览
宋艳, 丁明烨, 黄文娟等. 透明&beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA 纳米复合材料的制备及其光学性能[J]. 发光学报, 2014,35(3): 293-299
SONG Yan, DING Ming-ye, HUANG Wen-juan etc. Synthesis and Optical Properties of Transparent &beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(3): 293-299
宋艳, 丁明烨, 黄文娟等. 透明&beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA 纳米复合材料的制备及其光学性能[J]. 发光学报, 2014,35(3): 293-299 DOI: 10.3788/fgxb20143503.0293.
SONG Yan, DING Ming-ye, HUANG Wen-juan etc. Synthesis and Optical Properties of Transparent &beta;-NaYF<sub>4</sub>:Yb,Tm/PMMA Nanocomposites[J]. Chinese Journal of Luminescence, 2014,35(3): 293-299 DOI: 10.3788/fgxb20143503.0293.
采用高温溶剂热法制备了一系列不同Yb
3+
掺杂浓度的上转换发光纳米粒子-NaYF
4
:Yb,Tm和核壳结构的-NaYF
4
:Yb,Tm@-NaYF
4
:Yb纳米粒子。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、光致发光(PL)谱对材料的物相结构、形貌特征和发光性质进行了表征和研究,并特别研究了温度对材料发光性能的影响。结果表明:保持Tm
3+
浓度不变,随着Yb
3+
掺杂浓度的增加,-NaYF
4
:Yb,Tm的发光强度先增大后减小。当Yb
3+
掺杂摩尔分数为30%时,474 nm和645 nm处的发光强度达到最大值;当Yb
3+
掺杂摩尔分数为50%时,450 nm和692 nm处的发光强度达到最大值。在-NaYF
4
:Yb(30%),Tm上包裹一层-NaYF
4
:Yb壳层后,其发光显著增强,随壳层Yb
3+
摩尔分数的增加,发光强度也是先增大后减小。当壳层Yb
3+
摩尔分数为10%时,核壳结构纳米粒子的发光强度达到最大值;当壳层Yb
3+
摩尔分数达到40%时,核壳结构纳米粒子的发光强度已经低于未包裹时。将样品进行热处理后,荧光增强。样品的发光强度随环境温度的升高,红光变弱,蓝光增强。采用原位聚合法将-NaYF
4
:Yb,Tm纳米粒子与PMMA制成复合材料后,仍能保持较好的透明度和发光强度。
The hexagonal -NaYF
4
:Yb
Tm particles and core-shell structure -NaYF
4
:Yb
Tm@-NaYF
4
:Yb particles were prepared by solvothermal method. The as-prepared particles were characterized using X-ray diffraction (XRD)
field emission scanning electron microscopy (FESEM)
and photoluminescence (PL) spectra. With the increasing of Yb
3+
concentration
the luminus intensity of -NaYF
4
:Yb
Tm particle first increases
then decreases. When the mole fraction of Yb
3+
is 30%
the intensities of 474
645 nm reach the maximum
and when the mole fraction of Yb
3+
is 50%
the intensities of 450
692 nm reach the maximum. Then -NaYF
4
:30% Yb
Tm particls were coated by -NaYF
4
:Yb layer. When the mole fraction of Yb
3+
in shell layer is 10%
the luminus intensity of -NaYF
4
:Yb
Tm@-NaYF
4
:Yb particle is the maximum. The luminus intensities of all the samples increase after heat treatment
and the blue luminus intensity decreases and red luminus intensity increases with the increasing of ambient temperature. The transparent composite materials of -NaYF
4
:Yb
Tm and PMMA were synthesized by
in situ
polymerization
and showed good luminescence property.
Auzel F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev. Colum., 2004, 104(1):139-174. [2] Chivian J S, Case W E, Eden D D. The photon avalanche: A new phenomenon in Pr-based infrared quantum counters[J]. Appl. Phys. Lett., 1979, 35(2):124-126. [3] Lodahl P, Van Driel A F, Nikolaev I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 2004, 430(7000):654-657. [4] Shan G B, Demopoulos G P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer[J]. Adv. Mater., 2010, 22(39):4373-4377. [5] Van de Rijke F, Zijlmans H, Shang L, et al. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nat. Biotechnol., 2001, 19(3):273-276. [6] Chen G, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence[J]. Acs Nano, 2010, 4(6):3163-3168. [7] Menyuk N, Dwight K, Pierce J W, et al. NaYF4:Yb, ErAn efficient upconversion phosphor[J]. Appl. Phys. Lett., 1972, 21(4):159-161. [8] De Wild J, Meijerink A, Rath J K, et al. Towards upconversion for amorphous silicon solar cells[J]. Sol. Energy Mater. Sol. Cells, 2012, 94(11):1919-1922. [9] Huang W J, Lu C H, Jiang C F, et al. Controlled synthesis of NaYF4 nanoparticles and upconversion properties of NaYF4: Yb, Er (Tm)/FC transparent nanocomposite thin films[J]. J. Colloid Interf. Sci., 2012, 376(1):34-39. [10] Kobayshi T, Nakatsuka S, Iwafuji T, et al. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers[J]. Appl. Phys. Lett., 1997, 71(17):2421-2423. [11] Vetrone F, Mahalingam V, Zamarrron A, et al. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+, Yb3+ nanocrystals[J]. Chem. Mater., 2009, 21(9):1847-1851. [12] Yang L W, Han H L, Zhang Y Y, et al. White emission by frequency up-conversion in Yb3+-Ho3+-Tm3+ triply doped hexagonal NaYF4 nanorods[J]. J. Phys. Chem. C, 2009, 113(44):18995-18999. [13] Liu C, Zhang L, Zheng Q, et al. Advances in the surface engineering of upconversion nanocrystals[J]. Sci. Adv. Mater., 2012, 4(1):1-22. [14] Liu L, Wang Y, Zhang X R, et al. Upconversion mechanisms and thermal effects of Er3+ in Er3+ doped yttria nanocrystals[J]. J. Lumin., 2012, 132(6):1483-1488.
0
浏览量
25
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构