
浏览全部资源
扫码关注微信
广西大学 化学化工学院, 广西 南宁 530004
收稿日期:2013-10-09,
修回日期:2013-11-08,
纸质出版日期:2014-02-03
移动端阅览
刘声燕, 王益林, 杨昆. 近红外发射CdSeTe量子点测定铜离子[J]. 发光学报, 2014,35(2): 257-262
LIU Sheng-yan, WANG Yi-lin, YANG Kun. Determination of Copper Ion by Near-infrared-emitting CdSeTe Quantum Dots[J]. Chinese Journal of Luminescence, 2014,35(2): 257-262
刘声燕, 王益林, 杨昆. 近红外发射CdSeTe量子点测定铜离子[J]. 发光学报, 2014,35(2): 257-262 DOI: 10.3788/fgxb20143502.0257.
LIU Sheng-yan, WANG Yi-lin, YANG Kun. Determination of Copper Ion by Near-infrared-emitting CdSeTe Quantum Dots[J]. Chinese Journal of Luminescence, 2014,35(2): 257-262 DOI: 10.3788/fgxb20143502.0257.
以CdCl
2
2.5H
2
O、Na
2
SeO
3
、Na
2
TeO
3
和N
2
H
4
H
2
O为反应物,以3-巯基丙酸(MPA)为稳定剂制备CdSeTe量子点。与CdTe量子点相比,CdSeTe合金量子点的发射光谱明显红移,发光颜色可扩展至近红外波段范围。基于铜离子能有效猝灭CdSeTe合金量子点荧光的特性,开发了一种用近红外CdSeTe量子点为荧光探针测定铜离子浓度的分析方法。在最佳实验条件下,该方法的线性检测范围为10~200 g/L,检测上限为1.13 g/L。应用于实际样品中铜的测定,结果与ICP测定值非常吻合。
CdSeTe quantum dots (QDs) were synthesized by the reaction of CdCl
2
2.5H
2
O
Na
2
SeO
3
Na
2
TeO
3
and N
2
H
4
H
2
O in water and in the presence of 3-mercaptopropionic acid (MPA) as stabilizer. Comparing with the CdTe QDs
the CdSeTe alloy QDs showed an obvious red-shifted emission with the color-tune capability to the near-infrared (NIR) wavelength. The fluorescence of the CdSeTe QDs could be quenched by Cu
2+
ions. A simple and rapid method for Cu
2+
ions determination was proposed using the NIR CdSeTe QDs as fluorescent probes. Under optimal conditions
the response was linearly proportional to the concentration of Cu
2+
ions from 10 to 200 g/L
the limit of detection was 1.13 g/L. The developed method was successfully applied to the detection of trace Cu in real samples
and the results coincided with the ICP method.
Du H Y, Wei Z P, Li S, et al. Luminescent properties of surface modified ZnS:Mn quantum dot and detection of biological molecules [J]. Chin J. Lumin.(发光学报) , 2013, 34(4):421-426 (in Chinese). [2] Zhou H J, Cao L X, Gao R J, et al. Preparation, characterization and application of water-soluble CdTe luminescent probes [J]. Chin J. Lumin.(发光学报) , 2013, 34(7):829-835 (in Chinese). [3] Ying S Y, Cui S M, Wang W P, et al. Simple and sensitive detection method for diprophylline using glutathione-capped CdTe quantum dots as fluorescence probes [J]. J. Lumin., 2014, 145:575-581. [4] Chen Y F, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes [J]. Anal. Chem., 2002, 74(19):5132-5138. [5] Chen S T, Zhang X L, Zhang Q H, et al. CdSe quantum dots decorated by mercaptosuccinic acid as fluorescence probe for Cu2+ [J]. J. Lumin., 2011, 131(5):947-951. [6] Guo C X, Wang J L, Cheng J, et al. Determination of ultratrace copper ions utilizing CdTe quantum dots coupled with enzyme inhibition [J]. Biosens. Bioelectron., 2012, 36(1):69-74. [7] Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion [J]. Sens. Actuators B, 2009, 139(1):104-109. [8] Wang J Z, Zhou X P, Ma H B, et al. Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection [J]. Spectrochim. Acta: Part A, 2011, 81(1):178-183. [9] Liu Z Q, Liu S P, Yin P F, et al. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection [J]. Anal. Chim. Acta, 2012, 745(1):78-84. [10] Xia Y S, Zhu C Q. Aqueous synthesis of typeⅡcore/shell CdTe/CdSe quantum dots for near-infraredfluorescent sensing of copper (Ⅱ) [J]. Analyst., 2008, 133(7):928-932. [11] Liang G X, Liu H Y, Zhang J R, et al. Ultrasensitive Cu2+ sensing bynear-infrared-emitting CdSeTe alloyed quantum dots [J]. Talanta, 2010, 80(5):2172-2176. [12] Kalasad M N, Rabinal M K, Mulimani B G. Ambient synthesis and characterization of high-quality CdSe quantum dots by an aqueous route [J]. Langmuir, 2009, 25(21):12729-12735. [13] Wang Y L, Liu S Y, Mo F P, et al. Aqueous synthesis of CdTe quantum dots from hydrazine hydrate and tellurium dioxide [J]. Chem. J. Chin. Univ.(高等学校化学学报), 2013, 34(1):45-49 (in Chinese). [14] Wang X D, Yin P F, Gong H P, et al. Reversible control of fluorescence based on the interaction among CdTe QDs, CHA and AngⅠ[J].Chem. J. Chin. Univ.(高等学校化学学报), 2012, 33(6):1182-1187 (in Chinese). [15] Liao L F, Zhang H, Zhong X H. Facile synthesis of red- to near-infrared-emitting CdTexSe1-x alloyed quantum dots via a noninjection one-pot route [J]. J. Lumin., 2011, 131(2):322-327. [16] Gao M Y, Kirstein S, Mohwald H, et al. Strongly photoluminescent CdTe nanocrystals by proper surface modification [J]. J. Phys. Chem. B, 1998, 102(43):8360-8363. [17] Xie H Y, Liang J G, Zhang Z L, et al. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe [J]. Spectrochim. Acta: Part A, 2004, 60(11):2527-2530. [18] Pei J Y, Zhu H, Wang X L, et al. Synthesis of cysteamine-coated CdTe quantum dots and its application in mercury (Ⅱ) detection [J]. Anal. Chim. Acta., 2012, 757(1):63-68. [19] Ingole P P, Abhyankar R M, Prasad B L V, et al. Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions [J]. Mater. Sci. Eng. B, 2010, 168(1):60-65. [20] Wu P, Li Y, Yan X P. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+[J]. Anal. Chem., 2009, 81(15):6252-6257.
0
浏览量
175
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621