浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
收稿日期:2013-09-12,
修回日期:2013-10-31,
纸质出版日期:2014-02-03
移动端阅览
李红, 甘至宏, 刘星元. 超薄EuF<sub>3</sub>电极修饰层对有机场效应晶体管性能的提升[J]. 发光学报, 2014,35(2): 238-242
LI Hong, GAN Zhi-hong, LIU Xing-yuan. Improvements of Organic Field-effect Transistors by Introducing An EuF<sub>3</sub> Ultra-thin Film as Modified Layer Electrode[J]. Chinese Journal of Luminescence, 2014,35(2): 238-242
李红, 甘至宏, 刘星元. 超薄EuF<sub>3</sub>电极修饰层对有机场效应晶体管性能的提升[J]. 发光学报, 2014,35(2): 238-242 DOI: 10.3788/fgxb20143502.0238.
LI Hong, GAN Zhi-hong, LIU Xing-yuan. Improvements of Organic Field-effect Transistors by Introducing An EuF<sub>3</sub> Ultra-thin Film as Modified Layer Electrode[J]. Chinese Journal of Luminescence, 2014,35(2): 238-242 DOI: 10.3788/fgxb20143502.0238.
采用EuF
3
薄层修饰低功函数金属Ag源、漏电极,制备了CuPc有机场效应晶体管,研究了不同厚度EuF
3
对器件性能的影响。结果表明,EuF
3
的厚度由0 nm增至0.6 nm时,接触电阻由23.6510
5
cm减 至3.8610
5
cm,使得器件载流子迁移率由1.510
-3
cm
2
V
-1
s
-1
提高到4.6510
-3
cm
2
V
-1
s
-1
。 UPS测试结果表明,薄层EuF
3
在Ag与有机半导体间形成了界面偶极势垒,使源漏电极表面功函数增大,空穴注入势垒降低,Ag电极与有机半导体层界面的接触电阻减小,进而提升了空穴的注入效率。
Europium fluoride (EuF
3
) was employed to modify the source and drain electrodes in CuPc based OFETs
in which they were fabricated by low work function metal Ag. The Influence of EuF
3
with different thickness on devices was investigated. The contact resistance reduced from 23.6510
5
cm to 3.8610
5
cm as the thickness of EuF
3
increased from 0 nm to 0.6 nm
which lead to an increased field-effect mobility from 1.510
-3
cm
2
V
-1
s
-1
to 4.6510
-3
cm
2
V
-1
s
-1
. The UPS results show that an interfacial dipole potential is formed between the silver electrodes and the organic semiconductor layer. It raises the surface work function of the source and drain electrodes and reduces the hole injection barrier
thus decreases the contact resistance and improves the hole injection efficiency.
Dimitrakopoulos C D, Purushothaman S, Kymissis J, et al. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators [J]. Science, 1999, 283(5403):822-824. [2] Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics [J]. Adv. Mater., 2002, 14(2):99-117. [3] McCarthy M A, Liu B, Donoghue E P, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays [J]. Science, 2011, 332(6029):570-573. [4] Guo Y L, Yu G, Liu Y Q. Functional organic field-effect transistors [J]. Adv. Mater., 2010, 22(40):4427-4447. [5] Ma F, Wang S, Li X. Synthesis, spectral characterization of CuPcF16 and its application in organic thin film transistors using p-6p as inducing layer [J]. J. Phys. Chem. Solids, 2012, 73(4):589-592. [6] Wang J, Wang H B, Zhang J, et al. Organic thin-film transisitors with improved characteristics using lutetium bisphthalocyanine as a buffer layer [J]. Appl. Phys. Lett., 2005, 97(2):026106-1-3. [7] Chen F, Kung L, Chen T. Copper phthalocyanine buffer layer to enhance the charge injection inorganic thin-film transistors [J]. Appl. Phys. Lett., 2007, 90(7):073504-1-3. [8] Li J, Zhang X W, Zhang L, et al. MoOx interlayer to enhance performance of pentacene-TFTs with low-cost copper electrodes [J]. Synth. Met., 2010, 160(5):376-379. [9] Janssen A G F, Riedl T, Hamwi S, et al. Highly efficient organic tandem solar cells using an improved connecting architecture [J]. Appl. Phys. Lett., 2007, 91(7):073519-1-3. [10] Alam M W, Wang Z K, Naka S, et al. Mobility enhancement of top contact pentacene based organic thin film transistor with bi-layer GeO/Au electrodes [J]. Appl. Phys. Lett., 2013, 102(6):061105-1-3. [11] Minari T, Darmawan P, Liu C, et al. Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact [J]. Appl. Phys. Lett., 2012, 100(9):093303-1-3. [12] Ganzorig C, Fujihira M. Improved drive voltages of organic electroluminescent devices with an efficient p-type aromatic diamine hole-injection layer [J]. Appl. Phys. Lett., 2000, 77(25):4211-4213. [13] Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole injection buffer in organic light emitting diodes [J]. Appl. Phys. Lett., 2004, 84(15):2913-2915. [14] Liu X, Liu H, Xue Y Z. Organic thin film transistors modified OTS with different thicknesses of CuPc [J]. Chin. J. Liq. Cryst. Disp.(液晶与显示), 2009, 24(1):66-70 (in Chinese). [15] Hu Y, Lu Q, Li H, et al. Low voltage, high mobility air-stable ambipolar organic field-effect transistors with a voltage-dependent off-current state and modest operational stability [J]. Appl. Phys. Exp., 2013, 6(5):051602-1-5.. [16] Zhang N, Hu Y, Liu X. Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation [J]. Appl. Phys. Lett., 2013, 103(3):033301-1-3. [17] Koch N, Kahn A, Ghijsen J, et al. Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism [J]. Appl. Phys. Lett., 2003, 82(1):70-72. [18] Narioka S, Ishii H, Yoshimura D, et al. The electronic structure and energy level alignment of porphyrin/metal interfaces studied by ultraviolet photoelectron spectroscopy [J]. Appl. Phys. Lett., 1995, 67(13):1899-1901.
0
浏览量
80
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构