浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 内蒙古大学 鄂尔多斯学院, 内蒙古 鄂尔多斯 017000
收稿日期:2013-10-12,
修回日期:2013-12-30,
纸质出版日期:2014-02-03
移动端阅览
雷达, 孟根其其格, 梁静秋等. 一种平行背栅极碳纳米管阵列的场增强因子计算[J]. 发光学报, 2014,35(2): 224-231
LEI Da, MENGGEN Qi-qi-ge, LIANG Jing-qiu etc. Modeling Calculation for Field Enhancement Factor on A Carbon Nanotube Array with Parallel Back-grid[J]. Chinese Journal of Luminescence, 2014,35(2): 224-231
雷达, 孟根其其格, 梁静秋等. 一种平行背栅极碳纳米管阵列的场增强因子计算[J]. 发光学报, 2014,35(2): 224-231 DOI: 10.3788/fgxb20143502.0224.
LEI Da, MENGGEN Qi-qi-ge, LIANG Jing-qiu etc. Modeling Calculation for Field Enhancement Factor on A Carbon Nanotube Array with Parallel Back-grid[J]. Chinese Journal of Luminescence, 2014,35(2): 224-231 DOI: 10.3788/fgxb20143502.0224.
建立一种平行背栅极碳纳米管阵列阴极,基于电场叠加原理,利用镜像电荷法对其进行计算,给出碳纳米管顶端表面电场增强因子。在此基础上,进一步分析器件各类参数对电场增强因子的影响。分析表明,碳纳米管阵列阴极具有最佳阵列密度,其对应碳纳米管间距大约为碳纳米管高度的两倍,靠阴极阵列边缘部位的碳纳米管发射电子能力比其中心部位的大。除了碳纳米管的长径比之外,栅极宽度、栅极厚度和栅极间距等也对电场增强因子有一定的影响:栅极越宽,场增强因子越大;而栅极厚度、栅极间距越大,场增强因子就越小。
A model on the carbon nanotube array with parallel back-grid was proposed. The actual electric field at the top of carbon nanotubes and field enhancement factor were calculated analytically by using mirror image charge method based on the superposition principle of electric field. The effects of the geometrical parameters of the carbon nanotube device on the field enhancement factor were investigated. The calculation results show that the carbon nanotube array has the best density for field emission
the inter-tube distances are double height of carbon nanotubes and the electron emission ability of carbon nanotube near the edge of carbon nanotube array is larger than the carbon nanotube at the center of this array. The field enhancement factor increases with the width of back-grid
and decreases with the thickness and space of the back-grids.
Iima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363:603-604. [2] Xie S S, Li W Z, Pan Z W, et al. Mechanical and physical properties on carbon nanotube [J]. J. Phys. Chem. Solids, 2000, 61:1153-1158. [3] Milne W I, Teo K B K, Chhowalla M, et al. Electron emission from arrays of carbon nanotubes/fibres [J]. Curr. Appl. Phys., 2002, 2(6):509-513. [4] De Heer W A, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source [J]. Science, 1995, 270(5239):1179-1182. [5] Chen Q, Dai L. Three-dimensional micropatterns of well-aligned carbon nanotubes produced by photolithography [J]. J. Nanosci. Nanotechnol., 2001, 1(1):43-47. [6] Chen L F, Wang L, Yu X G, et al. Constructing Ag nanoparticles-single wall carbon hybrid nanostructure to improve field emission properties [J]. Appl. Surf. Sci., 2013, 265:187-190. [7] Ye Y, Xiao X J, Guo T L, et al. Study on field emission properties of CNT electroless plating with Ag [J]. J. Funct. Mater.(功能材料), 2012, 43(9):1221-1224 (in Chinese). [8] Chung D S, Park S H, Lee H W, et al. Carbon nanotube electron emitters with a gated structure using backside exposure processes [J]. Appl. Phys. Lett., 2002, 80(21):4045-4047. [9] Gao Y B, Zhang X B, Lei W, et al. Ion bombardment in a normal-gate FED [J]. Appl. Surf. Sci., 2005, 243(1-4):1922-1925. [10] Zhang Y A, Lin J Y, Wu Z X, et al. Study on field emission cathode based on planar-gate triode with carbon nanotubes by electrophoretic deposition [J]. J. Funct. Mater.(功能材料), 2011, 42(6):1130-1133 (in Chinese). [11] Zhao X X, Zhang G M. Theoretical optimization of nanowire density of thin film field emission cathodes [J]. Chin. J. Vac. Sci. Technol.(真空科学与技术学报), 2002, 22(5):358-360 (in Chinese). [12] Shi J C, Deng S Z, Xu N S, et al. Fabrication of vertically aligned Si nanowires and their application in a gated field emission device [J]. Appl. Phys. Lett., 2006, 88(1):013112-1-3. [13] Wong Y M, Kang W P, Davidson J L, et al. Carbon nanotube lateral field emitters with integrated metallic anode [J]. J. Vac. Sci., 2007, 25(2):548-551. [14] Wang X Q, Wang M, Li Z H, et al. Modeling and calculation of field emission enhancement factor for carbon nanotubes array [J]. Ultramicroscopy, 2005, 102(3):181-186. [15] Wang X Q, Wang M, Li Z H, et al. Calculation of the enhancement factor for the individual conductive nanowire in field emission [J]. Acta Phys. Sinica (物理学报), 2005, 53(3):1348-1351 (in Chinese). [16] Lei D, Wang W B, Zeng LY, et al. Calculation of field enhancement factor of gated nanowire [J]. Acta Phys. Sinica (物理学报), 2009, 58(5):3384-3388 (in Chinese). [17] Zhao H T, Chen J A, Wang Q B, et al. Simulation and design of pressure sensor based on carbon nanotubes field emission [J]. Transducer and Microsystem Technologies (传感器与微系统), 2011, 30(10):123-125 (in Chinese). [18] Miller H C. Change in field intensification factor beta of and electrode projection (Whisker) at short gap lengths [J].J. Appl. Phys.,1967, 38(11):4501-4504.
0
浏览量
158
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构