浏览全部资源
扫码关注微信
1. 兰州大学物理学院 微电子研究所, 甘肃 兰州 730000
2. 兰州大学 磁学与磁性材料教育部重点实验室,甘肃 兰州,730000
收稿日期:2013-09-22,
修回日期:2013-10-28,
纸质出版日期:2014-02-03
移动端阅览
刘金凤, 姚博, 郑挺才等. 基于PTCDA的有机/无机光敏二极管结构优化[J]. 发光学报, 2014,35(2): 218-223
LIU Jin-feng, YAO bo, ZHENG Ting-cai etc. Structure Optimization of Organic/Inorganic Photosensitive Diode Based on PTCDA[J]. Chinese Journal of Luminescence, 2014,35(2): 218-223
刘金凤, 姚博, 郑挺才等. 基于PTCDA的有机/无机光敏二极管结构优化[J]. 发光学报, 2014,35(2): 218-223 DOI: 10.3788/fgxb20143502.0218.
LIU Jin-feng, YAO bo, ZHENG Ting-cai etc. Structure Optimization of Organic/Inorganic Photosensitive Diode Based on PTCDA[J]. Chinese Journal of Luminescence, 2014,35(2): 218-223 DOI: 10.3788/fgxb20143502.0218.
以p型硅和苝四甲酸二酐 (perylene-3,4,9,10-tetracarboxylic acid dianhydride,PTCDA)为异质结,梳状金(Au)薄膜作为顶电极和光入射窗口制备了光敏二极管。研究表明,PTCDA的厚度和Au电极的厚度对光敏二极管的光响应度有很大的影响。对比不同PTCDA厚度的器件性能,在PTCDA厚度为100 nm时,光响应度最高达到0.3 A/W。进而采用最优化的100 nm厚的PTCDA薄膜制备硅基光敏二极管,对比不同Au电极厚度的器件性能。在Au厚度为20 nm时,器件的光响应度达到最优化的0.5 A/W。
A photodetector was prepared by a heterojunction of p-type silicon and (perylene-3
4
9
10-tetracarboxylic acid dianhydride) PTCDA
with comb-shape Au thin film acting as electrode and light-incident window. The experiment results show that the thickness of PTCDA and Au film have a great influence on the photoresponsivity and the external quantum efficiency of the photosensitive diode. The light responsivity can reach the maximum value of 0.3 A/W when PTCDA thickness is 100 nm. Then
the devices with the optimized 100 nm PTCDA and different thickness of Au electrode were fabricated. The optimal light responsivity can reach 0.5 A/W with 20 nm Au thickness.
Toh E H, Wang G H, Samudra G, et al. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization [J]. Appl. Phys. Lett., 2007, 90(26):263507-1-3. [2] Curry R J, Gillin W P, Knights A P, et al. Silicon-based organic light-emitting diode operating at a wavelength of 1.5 m [J]. Appl. Phys. Lett., 2000, 77(15):2271-2273. [3] Willander M, Zhao Q X, Nur O, et al. Some silicon-based heterostructures for optical applications [J]. J. Electron. Mater., 2005, 34(5):515-521. [4] Huang M M, Zhu X L. Development and application of silicon photodetectors [J]. Mechanical Engineering & Automation (机械工程与自动化), 2011, 6(4):203-205 (in Chinese) . [5] Yakuphanoglu F. Photovoltaic properties of the organic-inorganic photodiode based on polymer and fullerene blend for optical sensors [J]. Sens. Actuators A: Physical, 2008, 141(2):383-389. [6] Antohe S, Tomozeiu N, Gogonea S. Properties of the organic-on-inorganic semiconductor barrier contact diodes In/PTCDI/p-Si and Ag/CuPc/p-Si [J]. Phys. Stat. Sol. A, 1991, 125(1):397-408. [7] Chao C H, Chan C H, Wu F C, et al. Efficient hybrid organic/inorganic photovoltaic cells utilizing n-type pentacene and intrinsic/p-type hydrogenated amorphous silicon [J]. Solar Energy Materials and Solar Cells, 2011, 95(8):2407-2411. [8] Goh C, Scully S R, McGehee M D. Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells [J]. J. Appl. Phys., 2007, 101(11):114503-1-12. [9] Yamaura J, Muraoka Y, Yamauchi T, et al. Ultraviolet light selective photodiode based on an organic-inorganic heterostructure [J]. Appl. Phys. Lett., 2003, 83(11):2097-2099. [10] Era M, Morimoto S, Tsutsui T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4 [J]. Appl. Phys. Lett., 1994, 65(6):676-678. [11] Kagan C R, Breen T L, Kosbar L L. Patterning organic-inorganic thin-film transistors using microcontact printed templates [J]. Appl. Phys. Lett., 2001, 79(21):3536-3538. [12] Ostrick J, Dodabalapur A, Torsi L, et al. Conductivity-type anisotropy in molecular solids [J]. J. Appl. Phys., 1997, 81(10):6804-6808. [13] Proehl H, Nitsche R, Dienel T, et al. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates [J]. Phys. Rev. B, 2005, 71(16):165207-1-14. [14] Guan M, Cao G, Chu X, et al. Effect of MoO3-doped PTCDA as buffer layer on the performance of CuPc/C60 solar cells [J]. Phys. Status Solidi A, 2013, 210(6):1178-1182. [15] Agrawal R, Kumar P, Ghosh S. Mechanism of resistive switching in 3,4,9,10 perylenetetracarboxylic dianhydride (PTCDA) sandwiched between metal electrodes [J]. IEEE Trans. Electron Dev., 2008, 55(10):2795-2799. [16] Li L, Guan M, Cao G, et al. Highly efficient and stable organic light-emitting diodes employing MoO3-doped perylene-3, 4, 9, 10-tetracarboxylic dianhydride as hole injection layer [J]. Appl. Phys. A, 2010, 99(1):251-254. [17] Prabhakar V, Forrest S, Lorenzo J, et al. A patterned and passivated organic-inorganic semiconductor heterojunction diode [J]. Photon. Technol. Lett., IEEE, 1990, 2(10):724-726. [18] Soubiron T, Vaurette F, Nys J P, et al. Molecular interactions of PTCDA on Si(100) [J]. Surf. Sci., 2005, 581(2-3):178-188. [19] Fontana E. Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media [J]. Appl. Opt., 2006, 45(29):7632-7642. [20] Michael Q, Julian S. Semiconductor Manufacturing Technology [M]. Beijing: Electronic Industry Press, 2004(in Chinese). [21] Agrawal R, Ghosh S. Electrical characterization of Fermi level pinning in metal/3,4,9,10 perylenetetracarboxylic dianhydride interfaces [J]. Appl. Phys. Lett., 2006, 89(22):222114-1-3. [22] Nicoara N, Romn E, Gmez-Rodrguez J M, et al. Scanning tunneling and photoemission spectroscopies at the PTCDA/Au(111) interface [J]. Org. Electron., 2006, 7(5):287-294. [23] Forrest S R, Kaplan M L, Schmidt P H. Organic-on-inorganic semiconductor contact barrier diodes I. Theory with applications to organic thin films and prototype devices. [J]. J. Appl. Phys., 1984, 55(6):1492-1507. [24] Sze S M, Huang Z G. Semiconductor Device Physics [M]. Beijing: Electronic Industry Press, 1987 (in Chinese) . [25] Zalewski E F, Duda C R. Silicon photodiode device with 100% external quantum efficiency [J]. Appl. Opt., 1983, 22(18):2867-2873. [26] Forrest S R, Leheny R F, Nahory R E, et al. In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling [J]. Appl. Phys. Lett., 1980, 37(3):322-325. [27] Lunt R R, Giebink N C, Belak A A, et al. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching [J]. J. Appl. Phys., 2009, 105(5):053711-1-7. [28] Kang H S, Choi Ch S, Choi W Y, et al. Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors [J]. Appl. Phys. Lett., 2004, 84(19):3780-3782. [29] Peng Y Q, Lv W L, Yao B, et al. High performance near infrared photosensitive organic field-effect transistors realized by an organic hybrid planar-bulk heterojunction [J]. Org. Electron., 2013, 14:1045-1051. [30] Berger S, Heimer K, Mack H G, et al. IR and SFM study of PTCDA thin films on different substrates [J]. Appl. Surf. Sci., 2005, 252(1):81-84. [31] Han H, Shi Ch, Gao X Y, et al. Structural and electronic properties of PTCDA thin films on epitaxial graphene [J]. ACS Nano, 2009, 3(11):3431-3436.
0
浏览量
143
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构