浏览全部资源
扫码关注微信
1. 兰州大学物理科学与技术学院 微电子研究所,甘肃 兰州,730001
2. 兰州大学物理科学与技术学院 磁学重点实验室,甘肃 兰州,730001
收稿日期:2013-10-23,
修回日期:2013-11-26,
纸质出版日期:2014-02-03
移动端阅览
王金顺, 李海蓉, 彭应全等. ITO/Rubrene表面及界面的AFM和XPS研究[J]. 发光学报, 2014,35(2): 207-212
WANG Jin-shun, LI Hai-rong, PENG Ying-quan etc. Surface and Interface Analysis of ITO/Rubrene Using AFM and XPS[J]. Chinese Journal of Luminescence, 2014,35(2): 207-212
王金顺, 李海蓉, 彭应全等. ITO/Rubrene表面及界面的AFM和XPS研究[J]. 发光学报, 2014,35(2): 207-212 DOI: 10.3788/fgxb20143502.0207.
WANG Jin-shun, LI Hai-rong, PENG Ying-quan etc. Surface and Interface Analysis of ITO/Rubrene Using AFM and XPS[J]. Chinese Journal of Luminescence, 2014,35(2): 207-212 DOI: 10.3788/fgxb20143502.0207.
采用原子力显微镜(AFM)和X射线光电子能谱仪(XPS)研究了氧化铟锡(ITO)/红荧烯(Rubrene)的形貌和表面、界面的电子态。AFM结果显示,ITO上的Rubrene膜有良好的均匀性。XPS结果表明:C1s谱有3个峰,位于282.50,284.70,289.30 eV,对应于CSi、C O和CC键。用氩离子束溅射表面,芳香碳对应的峰值逐渐增大,其他两个峰值迅速消失。随着表面O污染的去除,O1s峰先快速减弱然后逐渐增强。界面附近的O原子与C原子结合构成O C、COC和醛基。In3d和Sn3d峰则缓慢增强,在界面附近峰值变得稳定。C1s、In3d、Sn3d谱峰都向低束缚能发生化学位移,表明ITO与Rubrene在界面发生了相互作用,形成一个互扩散层。
The surface morphology and the interface electronic states of Indium-tin-oxide (ITO)/Rubrene were investigated by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM results manifest that the Rubrene film deposited on ITO is very uniformity. The XPS results show that there are three main peaks in the C1s spectrum of the origin surface
which located at 282.50
284.70
289.30 eV
respectively. They are associated with CSi
C O
CC bonds. With the increasing of sputtering time
the peak corresponding to the aromatic C becomes intensely while the other peaks disappear rapidly. As the removing of the oxygen contamination on the surface
the O1s peak weakens firstly and then strengthens gradually. The O atoms mainly bond to C
and form O C
COC and aldehyde group in the interface. The peaks of In3d and Sn3d strengthen slowly
and become stable near the interface of ITO/Rubrene. The peak of C1s
In3d and Sn3d moves toward lower binding energy
indicating an inter-diffusion system formed by the interaction of Rubrene film and ITO in the interface.
Ma D, Hummelgen I A, Jing X, et al. Charge transport in a blue-emitting alternating block copolymer with a small spacer to conjugated segment length ratio [J]. J. Appl. Phys., 2000, 87(1):312-316. [2] Matsumura M, Furukawa T. Properties of organic light-emitting devices with a rubrene sub-monolayer inserted between electron-and hole-transport layers [J]. Jpn.J. Appl. Phys., 2002, 41:2742-2746. [3] Aziz H, Popovic Z D. Study of organic light emitting devices with 5, 6, 11, 12-tetraphenylnaphthacene (rubrene)-doped hole transport layer [J]. SPIE, 2003, 4800:80-86. [4] Li M, Li W, Niu J, et al. Efficient white organic light-emitting device based on a thin layer of hole-transporting host with rubrene dopant [J]. Solid-State Electron., 2005, 49(12):1956-1960. [5] Chen F, Huang X W. OLEDA Dream Display TechnologyMaterials and Devices [M]. Beijing: The People's Postal Press, 2011:116 (in Chinese). [6] Contarini S, Howlett S P, Rizzo C, et al. XPS study on the dispersion of carbon additives in silicon carbide powders [J]. Appl.Surf. Sci., 1991, 51(3):177-183. [7] Le Q T, Avendano F M, Forsythe E W, et al. X-ray photoelectron spectroscopy and atomic force microscopy investigation of stability mechanism of tris-(8-hydroxyquinoline) aluminum-based light-emitting devices [J]. J.Vac. Sci. Technol. A, 1999, 17(4):2314-2317. [8] Ou G, Song Z, Gui W, et al. Analysis of PTCDA/ITO surface and interface using X-ray photoelectron spectroscopy and atomic force microscopy [J]. Chin. J. Semicond., 2006, 27(2):229-234. [9] Sundberg P, Larsson R, Folkesson B. On the core electron binding energy of carbon and the effective charge of the carbon atom [J]. J. Electron Spectrosc. Related Phenom., 1988, 46(1):19-29. [10] Nordfors D, Nilsson A, Svensson S, et al. X-ray excited photoelectron spectra of free molecules containing oxygen [J]. J. Electron Spectrosc. Related Phenom., 1991, 56(2):117-164. [11] Wagner C D. Handbook of X-ray Photoelectron Spectroscopy [M]. New York: Perkin-Elmer, 1979. [12] Kang M S, Ma H, Yip H L, et al. Direct surface functionalization of indium tin oxide via electrochemically induced assembly [J]. J. Mater. Chem., 2007, 17(33):3489-3492. [13] Huang W, Mi B X, Gao Z Q. Organics Electronics [M]. Beijing: Science Press, 2011:277. [14] Zheng D, Li H, Wang Y, et al. Surface and interface analysis of tris-(8-hydroxyquinoline) aluminum and indium-tin-oxide using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) [J]. Appl. Surf. Sci., 2001, 183(3):165-172.
0
浏览量
242
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构