浏览全部资源
扫码关注微信
北京理工大学 光电学院 北京,100081
收稿日期:2013-10-23,
修回日期:2013-11-18,
纸质出版日期:2014-02-03
移动端阅览
李畅, 章婷, 薛唯. 溶剂预处理结合热退火提升聚噻吩结晶度及其光伏性能[J]. 发光学报, 2014,35(2): 202-206
LI Chang, ZHANG Ting, XUE Wei. Improvement of Polymer Crystallinity in Poly(3-hexylthiophene)-based Solar Cells <em>via</em> Solvent Vapor Pretreatment-assisted Thermal Annealing[J]. Chinese Journal of Luminescence, 2014,35(2): 202-206
李畅, 章婷, 薛唯. 溶剂预处理结合热退火提升聚噻吩结晶度及其光伏性能[J]. 发光学报, 2014,35(2): 202-206 DOI: 10.3788/fgxb20143502.0202.
LI Chang, ZHANG Ting, XUE Wei. Improvement of Polymer Crystallinity in Poly(3-hexylthiophene)-based Solar Cells <em>via</em> Solvent Vapor Pretreatment-assisted Thermal Annealing[J]. Chinese Journal of Luminescence, 2014,35(2): 202-206 DOI: 10.3788/fgxb20143502.0202.
活性层的微观形貌在很大程度上决定了聚合物光伏器件的性能表现并依赖于制备工艺条件。为了改善薄膜内部分子排布结构并追求较高的器件光电转化效率,采用溶液法制备了基于P3HT:PCBM的聚合物太阳能电池(器件结构:ITO/PEDOT:PSS/P3HT:PCBM/Al),通过改变器件制备流程中活性层退火处理工艺,研究了热退火、溶剂退火以及溶剂预处理结合热处理的双重退火对聚合物太阳电池性能的影响。研究发现:双重退火的光伏器件的各项性能参数均优于单一退火处理器件,获得了3.25%的光电转化效率。原子力显微镜及X射线衍射仪的表征结果进一步证明:双重退火处理能够在促进聚合物给体良好有序结晶的同时保证共混组分适度地相分离,从而有利于光生激子的解离以及载流子的传输。
The performances of polymer solar cells (PSCs) depend on processing conditions strongly. In order to increase the crystalline content of polymer and therefore improve the photovoltaic performance of devices
a combinative annealing process featured toluene vapor pretreatment and thermal annealing was introduced to the organic photovoltaic device fabrication
resulting in a high PCE up to 3.25% for P3HT: PCBM-based solar cells. The results of XRD and AFM further revealed that the improvement of
J
SC
V
OC
and
FF
were attributed to the improved P3HT crystallinity and chain ordering which facilitated photogenerated exciton dissociation and charge-carrier transport
compared with solvent or thermal annealed samples.
Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells [J]. J. Mater. Chem., 2006, 16(1):45-61. [2] Brabec C J, Durrant J R. Solution-processed organic solar cells [J]. MRS Bull., 2008, 33(7):670-675. [3] Service R F. Outlook brightens for plastic solar cells [J]. Science, 2011, 332(6027):293-303. [4] Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat. Mater., 2005, 4(11):864-868. [5] Ma W, Yang C, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv. Funct. Mater., 2005, 15(10):1617-1622. [6] Reyes-Reyes M, Kim M, Carroll D L. High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends [J]. Appl. Phys. Lett., 2005, 87(8):083506-1-3. [7] Li G, Zhu R, Yang Y. Polymer solar cells [J]. Nat. Photon., 2012, 6(3):153-161. [8] Campoy-Quiles M, Ferenczi T, Agostinelli T, et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer: Fullerene solar cell blends [J]. Nat. Mater., 2008, 7(2):158-164. [9] Yang X N, Loos J. Toward high-performance polymer solar cells: The importance of morphology control [J]. Macromolecules, 2007, 40(5):1353-1362. [10] Li G, Yao Y, Yang H, et al. "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes [J]. Adv. Funct. Mater., 2007, 17(10):1636-1644. [11] Miller S, Fanchini G, Lin Y Y, et al. Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing [J]. J. Mater. Chem., 2008, 18(3):306-312. [12] Verploegen E, Miller C E, Schmidt K, et al. Manipulating the morphology of P3HT-PCBM bulk heterojunction blends with solvent vapor annealing [J]. Chem. Mater., 2012, 24(20):3923-3931. [13] Kim Y, Choulis S A, Nelson J, et al. Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene [J]. Appl. Phys. Lett., 2005, 86(6):063502-1-3. [14] Bertho S, Janssen G, Cleij T J, et al. Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: Fullerene solar cells [J]. Sol. Energy Mater. Sol. Cells, 2008, 92(7):753-760. [15] Verploegen E, Mondal R, Bettinger C J, et al. Effects of thermal annealing upon the morphology of polymer-fullerene blends [J]. Adv. Funct. Mater., 2010, 20(20):3519-3529. [16] Kawano K, Sakai J, Yahiro M, et al. Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives [J]. Sol. Energy Mater. Sol. Cells, 2009, 93(4):514-518. [17] Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell [J]. Nat. Mater., 2005, 4(1):37-41. [18] Li G, Shrotriya V, Yao Y, et al. Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene) [J]. J. Appl. Phys., 2005, 98(4):043704-1-5. [19] Chu C W, Yang H, Hou W J, et al. Control of the nanoscale crystallinity and phase separation in polymer solar cells [J]. Appl. Phys. Lett., 2008, 92(10):103306-1-3. [20] Mihailetchi V D, Xie H X, De Boer B, et al. Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells [J]. Adv. Funct. Mater., 2006, 16(5):699-708. [21] Erb T, Zhokhavets U, Gobsch G, et al. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells [J]. Adv. Funct. Mater., 2005, 15(7):1193-1196. [22] Kittichungchit V, Hori T, Moritou H, et al. Effect of solvent vapor treatment on photovoltaic properties of conducting polymer/C60 interpenetrating heterojunction structured organic solar cell [J]. Thin Solid Films, 2009, 518(2):518-521.
0
浏览量
167
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构