浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 长春理工大学 材料科学与工程学院,吉林 长春,130022
收稿日期:2013-10-24,
修回日期:2013-12-16,
纸质出版日期:2014-02-03
移动端阅览
曾繁明, 李春, 林海等. Er:YbGG纳米粉体制备及荧光发光性能研究[J]. 发光学报, 2014,35(2): 190-194
ZENG Fan-ming, LI Chun, LIN Hai etc. Preparation and Luminescence Properties of Er:YbGG Nanopowder[J]. Chinese Journal of Luminescence, 2014,35(2): 190-194
曾繁明, 李春, 林海等. Er:YbGG纳米粉体制备及荧光发光性能研究[J]. 发光学报, 2014,35(2): 190-194 DOI: 10.3788/fgxb20143502.0190.
ZENG Fan-ming, LI Chun, LIN Hai etc. Preparation and Luminescence Properties of Er:YbGG Nanopowder[J]. Chinese Journal of Luminescence, 2014,35(2): 190-194 DOI: 10.3788/fgxb20143502.0190.
采用溶胶-凝胶法制备Er:YbGG纳米粉体,利用XRD、TG-DTA、IR和SEM等测试手段分析了Er:YbGG纳米粉体的物相结构和光谱性能。 结果表明:Er:YbGG纳米粉体属于立方晶系,空间群为
Ia-3d
,晶格参数
a
=1.2162 nm。在980 nm激光激发下,Er:YbGG纳米粉体在1 533 nm附近获得了较强的发射,其较高的发射强度得益于Yb
3+
-Er
3+
离子之间的能量传递。
Er:YbGG nanopowder was prepared by sol-gel method. XRD
TG-DTA
SEM and spectra analysis were utilized to investigate the phase structure and spectrum properties of the powder. The experiment results indicate that the fine Er:YbGG nanopowder belongs to a cubic phase with a space group of
Ia-3d
and lattice parameter
a
=1.216 2 nm. Under 980 nm excitation
an intensive fluorescence emission peak appears near 1 533 nm in the emission spetrum of Er:YbGG nanopowder
and the high intensity of the emission is attributed to the energy transmission between Yb
3+
and Er
3+
ions.
Wang P C, Liu C X, Zhao H F, et al. Synthesis of hexagonal NaYF4 nanoparticles and its particle size effect on conversion efficiency of Tb3+,Er3+ couples [J]. Chin. J. Lumin.(发光学报), 2012, 33(10):1068-1073 (in Chinese). [2] Yang Y M, Jiao F Y, Su H X, et al. Preparation and up-conversion efficiencies of Yb3+, Er3+ co-doped BaGd2ZnO5 [J]. Chin. J. Lumin.(发光学报), 2012, 33(12):1319-1323 (in Chinese). [3] Zong Y H, Zhao G J, Yan C F, et al. Growth and spectral properties of Gd2SiO5 crystal codoped with Er and Yb [J]. J. Cryst. Growth, 2006, 294:416-419. [4] Huang T D, Jiang B X, Wu Y S, et al. Fabrication of Yb3+,Er3+:YAG transparent ceramics and study of its 1.5 m fluorescence spectrum [J]. Acta Phys. Sinica (物理学报), 2009, 58(2):1298-1304 (in Chinese). [5] Zeng F M, Zhang Y, Sun J, et al. Spectroscopic analysis of Nd:GGG laser crystal [J]. Spectrosc. Spect. Anal.(光谱学与光谱分析), 2009, 29(5):1323-1326 (in Chinese). [6] Becker T, Huber G, Struve B, et al. 30 Hz operation of 2 m-Ho and Tm-lasers [J]. Opt. Commun., 1990, 80(1):47-51. [7] Mcfarlane R A. Upconversion laser in BaY2F8:Er5% pumped by ground-state and excited-state absorption [J]. Opt. Soc. Am. B, 1994, 11(5):871-880. [8] Sudesh V, Piper J A. Spectroscopy, modeling, and laser operation of thulium-doped crystals at 2.3 m [J]. IEEE J. Quant. Electron., 2000, 36(7):879-884. [9] Schweizer T, Jensen T, Heumann E, et al. Spectroscopic properties and diode pumped 1.6 m laser performance in Yb-codoped Er:Y3Al5O12 and Er:Y2SiO5 [J]. Opt. Commun., 1995, 118(5-6):557-561. [10] Nekvasil V. Crystal-field analysis of electronic Raman scattering data in YbAG and YbGG [J]. Phys. Stat. Sol. B, 1982, 109(1):67-74. [11] Armellini C, Chiasera A, Dir S, et al. Photoluminescence spectroscopy of Er3+/Yb3+ co-activated silica-alumina monolithic xerogels [J]. J. Sol-Gel. Sci. Technol., 2004, 32(1-3):267-271. [12] Guan R F, Sun Q, Li Q Q, et al. Co-precipitation synthesis and characterization of CaMoO4:Eu3+,Bi3+,Li+ red phosphor [J]. Chin. J. Lumin.(发光学报), 2013, 34(8):1000-1005 (in Chinese). [13] Zhao J W, Shan H, Shi D M, et al. Solvothermal synthesis of water soluble B-PEI/NaYF4:Yb3+,Er3+ nanoparticles with upconversion luminescence [J]. Chin. J. Lumin.(发光学报), 2012, 33(3):253-257 (in Chinese).
0
浏览量
208
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构