浏览全部资源
扫码关注微信
1. 闽南师范大学 物理与信息工程学院,福建 漳州,363000
2. 闽南师范大学 化学与环境科学系,福建 漳州,363000
收稿日期:2013-11-06,
修回日期:2013-12-20,
纸质出版日期:2014-02-03
移动端阅览
陈景东, 张婷,. 铁钝化多孔硅的制备及光致发光机理研究[J]. 发光学报, 2014,35(2): 184-189
CHEN Jing-dong, ZHANG Ting,. Fabrication and Photoluminescence Mechanism of Iron-passivated Porous Silicon[J]. Chinese Journal of Luminescence, 2014,35(2): 184-189
陈景东, 张婷,. 铁钝化多孔硅的制备及光致发光机理研究[J]. 发光学报, 2014,35(2): 184-189 DOI: 10.3788/fgxb20143502.0184.
CHEN Jing-dong, ZHANG Ting,. Fabrication and Photoluminescence Mechanism of Iron-passivated Porous Silicon[J]. Chinese Journal of Luminescence, 2014,35(2): 184-189 DOI: 10.3788/fgxb20143502.0184.
采用水热腐蚀法在相同环境下制备了不同晶型的铁钝化多孔硅样品。同一样品表面具有相似的孔隙结构,不同样品形貌存在差异。在300 nm光激发下,样品发光峰位于618 nm附近,半高宽约为132 nm。傅立叶红外变换光谱显示样品中有强的SiSi、SiOSi、O
<
em
>
ySiH
x
化学键振动吸收。结果表明,水热腐蚀法制备的铁钝化多孔硅表面形貌与腐蚀过程的局域电极分布关系密切。样品的光致发光行为可归因于量子限制-发光中心作用,并受非桥氧空穴发光中心数量影响。
Hydrothermal etching method was employed to fabricate four iron-passivated porous silicon (IP-Si) samples on two silicon wafers with different crystal orientations. The morphology of the samples was observed by scanning electron microscope (SEM)
and no correlation between the porous structures and the crystal orientation was found. Under 300 nm excitation
the samples emitted strong orange light with a peak at ~618 nm and FWHM of ~132 nm. Furthermore
Fourier transform infrared spectroscopy was employed to characterize the chemical bonds on the surface of porous structures. Finally
the physical mechanism for the photoluminescence of IP-Si was interpreted by using the quantum confinement-luminescence center model
and the tiny difference in PL can be ascribed to the small inconsistency of non-bridging oxygen hole center distributed in IP-Si.
Uhlir A. Electrolytic shaping of germanium and silicon [J]. Bell Syst. Tech. J., 1956, 35(2):333-347. [2] Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl. Phys. Lett., 1990, 57(10):1046-1048. [3] Lehmann V, Gsele U. Porous silicon formation: A quantum wire effect [J]. Appl. Phys. Lett., 1991, 58(8):856-858. [4] Cullis A G, Canham L T, Calcott P D J. The structural and luminescence properties of porous silicon [J]. J. Appl. Phys., 1997, 82(3):909-965. [5] Koshida N, Koyama H. Visible electroluminescence and photoluminescence from porous silicon and its related optoelectronic properties [J]. Appl. Phys. Lett., 1992, 60(3):347-349. [6] Araki M, Koyama H, Koshida N. Fabrication and fundamental properties of an edge-emitting device with step-index porous silicon waveguide [J]. Appl. Phys. Lett., 1996, 68(21):2999-3000. [7] Lu M, Xu S H, Zhang S T, et al. Optical properties of organic microcavity based on porous silicon bragg reflector [J]. Acta Phys. Sinica (物理学报), 2000, 49(10):2083-2088 (in Chinese). [8] Tsybeskov L, Duttagupta S P, Hirschman K D, et al. Stable and efficient electroluminescence from a porous silicon-based bipolar device [J]. Appl. Phys. Lett., 1996, 68(15):2058-2060. [9] Mahmoudi B, Gabouze N, Guerbous L, et al. Long-time stabilization of porous silicon photoluminescence by surface modification [J]. J. Lumin., 2007, 127(2):534-540. [10] Yuan M L, Tang L, Wu Z Q, et al. Effects of acid treatment and cathode reductionon the luminescence and stability of porous silicon [J]. Chin. J. Lumin.(发光学报), 2012, 33(2):146-149 (in Chinese). [11] Jalkanen T, Tuura J, Mkil E, et al. Electro-optical porous silicon gas sensor with enhanced selectivity [J]. Sens. Actuators B: Chem., 2010, 147(1):100-104. [12] Hu M, Liu Q L, Jia D L, et al. Gas-sensing properties at room temperature for the sensors based on tungsten oxide thin films sputtered on n-type ordered porous silicon [J]. Acta Phys. Sinica (物理学报), 2013, 62(5):057102-1-9 (in Chinese). [13] Lin M, Zhang F M, Wu X S, et al. Preparation and effect of porous silicon on the surfaceof silicon solar cells [J]. Chin. J. Lumin.(发光学报), 2013, 34(6):758-762 (in Chinese). [14] Savage D J, Liu X W, Curley S A, et al. Porous silicon advances in drug delivery and immunotherapy [J]. Current opinion in Pharmacology, 2013, 13(5):834-841. [15] Chen J D, Zhao W R, Zhang T, et al. Photoluminescence stability of iorn-passivated porous silicon under ultraviolet light irradiation [J]. Heat Treatment Technology and Equipment (热处理技术与装备), 2008, 29(5):33-36 (in Chinese). [16] Li X J, Hu X, Jia Y, et al. Tunable superstructures in hydrothermally etched iron-passivated porous silicon [J]. Appl. Phys. Lett., 1999, 75(19):2906-2908. [17] Zhang Y H, Li X J, Zheng L, et al. Nondegrading photoluminescence in porous silicon[J]. Phys. Rev. Lett., 1998, 81(8):1710-1713. [18] Fathauer R W, George T, Ksendzov A, et al. Visible luminescence from silicon wafers subjected to stain etches [J]. Appl. Phys. Lett., 1992, 60(8):995-997. [19] Shih S, Jung K H, Hsieh T Y, et al. Photoluminescence and formation mechanism of chemically etched silicon [J]. Appl. Phys. Lett., 1992, 60(15):1863-1865. [20] Sun C L, Hu H, Feng H H, et al. Synthesis of porous silicon nano-wires and the emission of red luminescence [J]. Appl. Surf. Sci., 2013, 282:259-263. [21] Kooij E S, Butter K, Kelly J J. Hole injection at the silicon aqueous electrolyte interface: A possible mechanism for chemiluminescence from porous silicon [J]. J. Electrochem. Soc., 1998, 145(4):1232-1238. [22] Li X J, Zhu D L, Chen Q W, et al. Strong- and nondegrading-luminescent porous silicon prepared by hydrothermal etching [J]. Appl. Phys. Lett., 1999, 74(3):389-391. [23] Smith R L, Collins S D. Porous silicon formation mechanisms [J]. J. Appl. Phys., 1992, 71(8):R1-R22. [24] Witten Jr T A, Sander L M. Diffusion-limited aggregation, a kinetic critical phenomenon [J]. Phys. Rev. Lett., 1981, 47(19):1400-1403. [25] Li X J, Zhang Y H. Quantum confinement in porous silicon [J]. Phys. Rev. B, 2000, 61(19):12605-12607. [26] Solomon I, Rerbal K, Chazalviel J N, et al. Intense photoluminescence of thin films of porous hydrogenated microcrystalline silicon[J]. J. Appl. Phys., 2008, 103(8):083108-1-4. [27] Lowe-Webb R R, Lee H, Ewing J B, et al. Correlation between photoluminescence and infrared absorption spectra of oxidized nanoscale silicon clusters [J]. J. Appl. Phys., 1998, 83(5):2815-2819. [28] Gorbach T Y, Rudko G Y, Smertenko P S, et al. Simultaneous changes in the photoluminescence, infrared absorption and morphology of porous silicon during etching by HF [J]. Semicond. Sci. Technol., 1996, 11(4):601-606. [29] Shih S, Jung K H, Kwong D L, et al. Photoluminescence study of anodized porous Si after HF vapor phase etching [J]. Appl. Phys. Lett., 1993, 62(16):1904-1906. [30] Matsumoto T, Belogorokhov A I, Belogorokhova L I, et al. The effect of deuterium on the optical properties of free-standing porous silicon layers [J]. Nanotechnol., 2000, 11(4):340-347. [31] Zhang L Z, Mao J C, Zhang B R, et al. Time evolution of the infrared absorption and photoluminescence of porous silicon in air [J]. Chin. J. Semicond.(半导体学报), 1992, 13(11):715-719 (in Chinese). [32] Qin G G. Mechanisms for photoluminescence from nanoscale silicon/silicon oxide systems [J]. J. Infrared and Millimeter Waves (红外与毫米波学报), 2005, 24(3):0165-0173 (in Chinese). [33] Qin G G, Jia Y Q. Mechanism of the visible luminescence in porous silicon [J]. Solid State Commun., 1993, 86(9):559-563. [34] Munekuni S, Yamanaka T, Shimogaichi Y, et al. Various types of nonbridging oxygen hole center in high-purity silica glass [J]. J. Appl. Phys., 1990, 68(3):1212-1217. [35] Li P, Li Q S, Zhang S Y, et al. Impacts of anneding and ageing on the porous silicon photoluminescence in oxygen plasma [J]. Laser & Infrared (激光与红外), 2011, 41(7):788-792 (in Chinese).
0
浏览量
147
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构