浏览全部资源
扫码关注微信
同济大学 材料科学与工程学院 上海,201804
收稿日期:2013-10-29,
修回日期:2013-12-17,
纸质出版日期:2014-02-03
移动端阅览
黄河洲, 贺蕴秋, 李文有等. 电化学法制备的还原氧化石墨烯薄膜及其光电性能研究[J]. 发光学报, 2014,35(2): 142-148
HUANG He-zhou, HE Yun-qiu, LI Wen-you etc. Photoelectric Conversion Properties of Graphene Oxide Film Prepared by Electrochemical Deposition[J]. Chinese Journal of Luminescence, 2014,35(2): 142-148
黄河洲, 贺蕴秋, 李文有等. 电化学法制备的还原氧化石墨烯薄膜及其光电性能研究[J]. 发光学报, 2014,35(2): 142-148 DOI: 10.3788/fgxb20143502.0142.
HUANG He-zhou, HE Yun-qiu, LI Wen-you etc. Photoelectric Conversion Properties of Graphene Oxide Film Prepared by Electrochemical Deposition[J]. Chinese Journal of Luminescence, 2014,35(2): 142-148 DOI: 10.3788/fgxb20143502.0142.
通过电化学方法在FTO导电玻璃上沉积了不同还原程度(C/O)的还原氧化石墨烯薄膜(rGO),其中rGO薄膜由未经处理的GO电解液制备,A-rGO由碱处理后的电解液制备,B-rGO由NaBH
4
处理后的电解液制备。利用XRD、XPS、SEM、UV-Vis对薄膜的化学结构和微观形貌进行了表征,并研究了薄膜在可见光照射下的光电性能。结果表明:在1.8 V下沉积的不同C/O比的rGO薄膜中,B-rGO薄膜的C/O比最高(8.1),带隙最小(0.54 eV),导带最靠近FTO的导带位置。在可见光照射下,几种薄膜均产生了阴极电流,电流密度随C/O比的增大而增大,其中B-rGO最大达1 Acm
-2
。本文提供了一种通过控制C/O比来控制rGO薄膜光电性能的方法。
Reduced graphene oxide (rGO) films with different reduction degrees (C/O ratios) were prepared on FTO by electrochemical deposition method. rGO prepared from GO electrolyte
A-rGO prepared from electrolyte after alkali treatment
and B-rGO prepared from electrolyte after NaBH
4
treatment
respectively. XRD
XPS
SEM and UV-Vis analysis were adopted to analyze the chemical structure and morphology of the films. The photoelectric properties of the films under visible light were studied. The results show that B-rGO film has the highest C/O ratio (8.1) and the lowest band gap (0.54 eV) among the three films
and its conduction band is almost closed to the FTO's. Under visible light illuminating
the films all generate cathodic photocurrent
and the photocurrent density increases with the increasing of C/O ratio. The photocurrent density of B-rGO (1 Acm
-2
) is the largest in the three films. In our work
we provide a feasible method to control the photoelectric property of rGO films by controlling their C/O ratios.
Loh K P, Bao Q, Eda G, et al. Graphene oxide as a chemically tunable platform for optical applications [J]. Nat. Chem., 2010, 2(12):1015-1024. [2] Boukhvalov D W, Katsnelson M I. Modeling of graphite oxide [J]. J. Am. Chem. Soc., 2008, 130:10697-10701. [3] Mathkar A, Tozier D, Cox P, et al. Controlled, stepwise reduction and band gap manipulation of graphene oxide [J]. J. Phys. Chem. Lett., 2012, 3(8):986-991. [4] Jeong H K, Jin M H, So K P, et al. Tailoring the characteristics of graphite oxides by different oxidation times [J]. J. Phys. D: Appl. Phys., 2009, 42(6):065418-1-5. [5] Eda G, Mattevi C, Yamaguchi H, et al. Insulator to semimetal transition in graphene oxide [J]. J. Phys. Chem. C, 2009, 113(35):15768-15771. [6] Lu Z, Guo C X, Yang H B, et al. One-step aqueous synthesis of grapheme-CdTe quantum dot-composed nanosheet and its enhanced photoresponses [J]. J. Colloid Interf. Sci., 2011, 353(2):588-592. [7] Wang J X, Wang K Z, Yang H Q, et al. Photo-electronic property of graphene oxide [J]. J. Chem.(化学学报), 2011, 69(21):2539-2542 (in Chinese). [8] Zhang X Y, Sun M X, Sun Y J, et al. Photo-electronic and chemical properties of graphene oxide [J]. Acta Phys. Chim. Sinica (物理化学学报), 2011, 27(12):2831-2835 (in English). [9] Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4(8):4806-4814. [10] Chua C K, Pumera M. Reduction of graphene oxide with substituted borohydrides [J]. J. Mater. Chem. A, 2013, 1(5):1892-1898. [11] Pavlishchuk V V, Addison A W. Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25℃ [J]. Inorg. Chim. Acta, 2000, 298(1):97-102. [12] Tauc J. Optical properties and electronic structure of amorphous Ge and Si [J]. Mater. Res. Bull., 1968, 3:37-46. [13] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium [J]. Phys. Stat. Sol., 1996, 15:627-637. [14] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance [J]. Adv. Funct. Mater., 2009, 19(12):1987-1992. [15] Fan X, Peng W, Li Y, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation [J]. Adv. Mater., 2008, 20(23):4490-4493.
0
浏览量
267
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构