浏览全部资源
扫码关注微信
1. 南京师范大学 环境科学与工程系,江苏 南京,210023
2. 南京理工大学 工业化学研究所, 江苏 南京 210094
收稿日期:2013-08-23,
修回日期:2013-09-19,
纸质出版日期:2014-01-03
移动端阅览
成春文, 王风贺, 段伦超, 雷武, 夏明珠, 王风云. 一种新型罗丹明类荧光分子探针及其对Fe(Ⅲ)的选择性识别[J]. 发光学报, 2014,35(1): 125-130
CHENG Chun-wen, WANG Feng-he, DUAN Lun-chao, LEI Wu, XIA Ming-zhu, WANG Feng-yun. Synthesis of A New Fluorescent Probe Based on Rhodamine and Its Performance in Selective Recognition of Fe(Ⅲ)[J]. Chinese Journal of Luminescence, 2014,35(1): 125-130
成春文, 王风贺, 段伦超, 雷武, 夏明珠, 王风云. 一种新型罗丹明类荧光分子探针及其对Fe(Ⅲ)的选择性识别[J]. 发光学报, 2014,35(1): 125-130 DOI: 10.3788/fgxb20143501.0125.
CHENG Chun-wen, WANG Feng-he, DUAN Lun-chao, LEI Wu, XIA Ming-zhu, WANG Feng-yun. Synthesis of A New Fluorescent Probe Based on Rhodamine and Its Performance in Selective Recognition of Fe(Ⅲ)[J]. Chinese Journal of Luminescence, 2014,35(1): 125-130 DOI: 10.3788/fgxb20143501.0125.
以罗丹明B、乙二胺和乙二醛为反应原料,合成了一种新型的荧光增强型识别Fe
3+
的分子探针(fluorescent probe,FP)。用核磁和质谱对其分子结构进行了表征,并通过荧光光谱研究了FP对Al
3+
、Pb
2+
、Cu
2+
、Cd
2+
、Mn
2+
、Hg
2+
、Mg
2+
、Ca
2+
、K
+
、Na
+
等不同金属离子的识别性能。研究结果表明:在纯甲醇溶剂中,探针FP对Fe
3+
的识别具有较好的选择性,且基本不受其他金属离子的干扰;通过Jobs曲线可知,探针FP与Fe
3+
的络合比为1:3;Fe
3+
浓度在410
-4
~510
-3
mol/L范围内时,探针FP的荧光强度与Fe
3+
浓度具有良好的线性关系,线性相关系数为0.995 3。
A novel fluorescent probe (FP) for detecting Fe
3+
was synthesized from rhodamine B
ethylenediamine and glyoxal. Its molecule structure of FP was characterized by
1
H NMR and MS
and its fluorescent properties of FP in detecting Fe
3+
and other different metal ions were investigated by fluorescent spectroscopy. The experimental results show that FP has a higher selective recognition for Fe
3+
in CH
3
OH
and other metal ions
such as Al
3+
Pb
2+
Cu
2+
Cd
2+
Mn
2+
Hg
2+
Mg
2+
Ca
2+
K
+
and Na
+
have no effects on its recognition for Fe
3+
. The complexation ratio of FP/Fe
3+
is l:3 from the method of Jobs plot by UV-Vis spectroscopy. When the concentration of Fe
3+
is 410
-4
~510
-3
mol/L
there is a good linear relationship between the fluorescence intensity of FP and the concentration of Fe
3+
and the linear correlation coefficient is 0.995 3. The analysis reveals that FP can be used as a fluorescent sensor for the selective detection of Fe
3+
.
Czarnik A W, Dujols V, Ford F. A long-wavelength fluorescent chemodosimeter selective for Cu(Ⅱ) ion in water[J]. J. Am. Chem. Soc., 1997, 119(31):7386-7387.[2] Li C Y, Zhang X B, Qiao L Z, et al. Naphthalimide-porphyrin hybrid based ratiometric bioimaging probe for Hg2+:Well-resolved emission spectra and unique specificity[J]. Anal. Chem., 2009, 81(24):9993-10001.[3] Atsushi N, Ryousuke Y, Takeshi O, et al. BODIPY-based chain transfer agent:Reversibly thermoswitchable luminescent gold nanoparticle stabilized by BODIPY-terminated water-soluble polymer[J]. Langmuir, 2010, 26(19):15644-15649.[4] Jung H S, Ko K C, Kim G H, et al. Coumarin-based thiol chemosensor: Synthesis, turn-on mechanism, and its biological application[J]. Org. Lett., 2011, 13(6):1498-1501.[5] Chen X Q, Yoon J Y, Kim J S, et al. Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives[J]. Chem. Rev., 2012, 112(3):1910-1956.[6] Kumar M, Kumar N, Bhalla V, et al. Naphthalimide appended rhodamine derivative: Through bond energy transfer for sensing of Hg2+ ions[J]. Org. Lett., 2011, 13(6):1422-1425.[7] Yang Z, She M Y, Li J L, et al. Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells[J]. J. Org. Chem., 2012, 77(2):1143-1147.[8] Liu J L, Li C Y, Li F Y. Fluorescence turn-on chemodosimeter-functionalized mesoporous silica nanoparticles and their application in cell imaging[J]. J. Mater. Chem., 2011, 21(20):7175-7181.[9] Liu W M, Zhang X L, Li H P, et al. Dithiolane linked thiorhodamine dimer for Hg2+ recognition in living cells[J]. Org. Biomol. Chem., 2009, 7(4):660-664.[10] Tae J S, Yang Y K, Lee S. A gold(Ⅲ) ion-selective fluorescent probe and its application to bioimagings[J]. Org. Lett., 2009, 11(24):5610-5613.[11] Chen X Q, Yoon J Y, Park S, et al. Hg2+ selective fluorescent and colorimetric sensor: Its crystal structure and application to bioimaging[J]. Org. Lett., 2008, 10(12):5235-5238.[12] Zhang M, Zhang J P, Zhu M W, et al. A selective turn-on fluorescent sensor for Fe Ⅲ and application to bioimaging[J]. Tetrahedron Lett., 2007, 48(21):3709-3712.[13] Tae J S, Ko S K, Yang Y K, et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe[J]. J. Am. Chem. Soc., 2006, 128(43):14150-14155.[14] Amrita C, Santra M, Ahn K H, et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media[J]. J. Am. Chem. Soc., 2009, 131(6):2040-2041.[15] Hu M M, Fan J L, Peng X J, et al. Fluorescent probe visual detection of copper ion in aqueous solution[J]. Chin. J. Anal. Chem.(分析化学), 2011, 39(8):1195-1200 (in Chinese).[16] Nicolas J, Veronica S M, Giuseppe M, et al. Fluorescently labeled protein-polymer bioconjugates using protein-derived macroinitiators from living radical polymerization[J]. ACS Symp. Series (Polymers for Biomedical Applications), 2008, 977:78-94.[17] Banerjee A, Shuai Y, Dixit R, et al. Concentration dependence of fluorescence signal in a microfluidic fluorescence detector[J]. J. Lumin., 2010, 130(6):1095-1100.[18] Li N, Liu M L, Shi J L, et al. Recent progress in rhodamine-based "off-on" fluorescent probes[J]. Chin. J. Org. Chem.(有机化学), 2011, 31(1):39-53(in Chinese).[19] Zhang X, Shiraishi Y, Hirai T. Cu(Ⅱ)-selective green fluorescence of a rhodamine diacetic acid conjugate[J]. Org. Lett., 2007, 9(24):5039-5042.
0
浏览量
91
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构