浏览全部资源
扫码关注微信
1. 兰州理工大学 理学院,甘肃 兰州,730050
2. 兰州城市学院 培黎工程技术学院,甘肃 兰州,730070
收稿日期:2013-08-21,
修回日期:2013-11-13,
纸质出版日期:2014-01-03
移动端阅览
侯尚林, 吕瑞, 刘延君, 王道斌, 雷景丽, 黎锁平, 赵宇杰. 光子晶体光纤中去极化型声波导布里渊散射频移和散射效率研究[J]. 发光学报, 2014,35(1): 113-118
HOU Shang-lin, LYU Rui, LIU Yan-jun, WANG Dao-bin, LEI Jing-li, LI Suo-ping, ZHAO Yu-jie. Investigation on Frequency Shift and Scattering Efficiency of Depolarized Guided Acoustic Brillouin Scattering in Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2014,35(1): 113-118
侯尚林, 吕瑞, 刘延君, 王道斌, 雷景丽, 黎锁平, 赵宇杰. 光子晶体光纤中去极化型声波导布里渊散射频移和散射效率研究[J]. 发光学报, 2014,35(1): 113-118 DOI: 10.3788/fgxb20143501.0113.
HOU Shang-lin, LYU Rui, LIU Yan-jun, WANG Dao-bin, LEI Jing-li, LI Suo-ping, ZHAO Yu-jie. Investigation on Frequency Shift and Scattering Efficiency of Depolarized Guided Acoustic Brillouin Scattering in Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2014,35(1): 113-118 DOI: 10.3788/fgxb20143501.0113.
利用矢量有限元法,数值模拟了不同结构参数下光子晶体光纤中空气孔填充率与去极化型声波导布里渊散射频移的关系,以及布里渊散射频移与布里渊散射效率的关系。研究结果表明,空气孔填充率的增大会导致扭转径向模式的去极化型声波导布里渊散射频移下移。空气孔节距或纤芯直径一定时,高阶模式的频移对空气孔填充率的变化更为敏感。扭转径向模式的去极化型布里渊散射效率都随布里渊散射频移的增大而增大。
The influence of the air hole filling factor on the frequency shift of depolarized guided acoustic Brillouin scattering in photonic crystal fibers with various structural parameters was presented. The dependence of Brillouin frequency shift on Brillouin scattering efficiency was investigated. The results indicate that the Brillouin frequency shift decreases with the air hole filling factor increasing. For a given lattice pitch or core diameter
the influence of the air hole filling factor on frequency shift of the higher order torsional-radial mode is more sensitive
and the scattering efficiency of the depolarized guided acoustic Brillouin scattering increases with the Brillouin frequency shift increasing.
Damzen M J, Vlad V I, Babin V, et al. Stimulated Brillouin Scattering: Fundamentals and Applications[M]. London: Institute of Physics Publishing, 2003:6.[2] Agrawal G P. Nonlinear Fiber Optics[M]. California: Academic Press, 1995:306.[3] Elser D, Andersen U L, Korn A, et al. Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers[J]. Phys. Rev. Lett., 2006, 97(13):133901-1-4.[4] Shelby R M, Levenson M D, Bayer P W. Guided acoustic-wave Brillouin scattering[J]. Phys. Rev. B, 1985, 31(8):5244-5252.[5] Sittig E, Coquin G. Visualization of plane-strain vibration modes of a long cylinder capable of producing sound radiation[J]. J. Acoust. Soc. Am., 1970, 48(5):1150-1159.[6] Tanaka Y, Ogusu K. Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering[J]. IEEE Photon. Technol. Lett., 1998, 10(12):1769-1771.[7] Tanaka Y, Ogusu K. Tensile-strain coefficient of resonance frequency of depolarized guided acoustic wave Brillouin scattering[J]. IEEE Photon. Technol. Lett., 1999, 11(7):865-867.[8] Beugnot J C, Maillotte H. Guided acoustic wave Brillouin scattering in photonic crystal fibers[J]. Opt. Lett., 2007, 32(1):17-19.[9] Matsui T, Nakajima K, Sakamoto T, et al. Structural dependence of guided acoustic-wave Brillouin scattering spectra in hole-assisted fiber and its temperature dependence[J]. Appl. Opt., 2007, 46(28):6912-6917.[10] Beugnot J C, Sylvestre T, Carrya E, et al. Role of microstructure on guided acoustic wave Brillouin scattering in photonic crystal fibers[J]. SPIE, 2009, 7357:73570S-1-5.[11] Shibata N, Nakazono A, Taguchi N, et al. Forward Brillouin scattering in holey fibers[J]. IEEE Photon. Technol. Lett., 2006, 18(2):412-414.[12] Carry E, Beugnot J C, Stiller B, et al. Temperature coefficient of the high-frequency guided acoustic mode in a photonic crystal fiber[J]. Appl. Opt., 2011, 50(35):6543-6547.[13] McElhenny J E, Pattnaik R K, Toulouse J. Dependence of frequency shift of depolarized guided acoustic wave Brillouin scattering in photonic crystal fibers[J]. J. Lightwave Technol., 2011, 29(2):200-208.[14] Hou S L, Xue L M, Li S P, et al. Study on characteristics of acoustic modes via stimulated Brillouin scattering in photonic crystal fiber[J]. Acta Phys. Sinica (物理学报), 2012, 61(13):134205-1-5 (in Chinese).[15] Hou S L, Xue L M, Liu Y J, et al. Temperature and stress response of depolarized guided acoustic Brillouin scattering in photonic crystal fibers[J]. Chin. J. Lumin.(发光学报), 2013, 34(4):500-505 (in Chinese).[16] Huang Y, Zhang W, Wang Y, et al. Theoretical analysis of novel Brillouin scattering properties in photonic crystal fibers based on silica rod model[J]. Acta Phys. Sinica (物理学报), 2009, 58(3):1731-1737 (in Chinese).
0
浏览量
154
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构