浏览全部资源
扫码关注微信
集成光电子学国家重点联合实验室吉林大学实验区 吉林大学电子科学与工程学院,吉林 长春,130012
收稿日期:2013-07-19,
修回日期:2013-10-24,
纸质出版日期:2014-01-03
移动端阅览
蔡旭浦, 李万程, 高福斌, 景强, 吴国光, 张宝林, 杜国同. In插入层对硅衬底外延InN晶体质量和光学特性的影响[J]. 发光学报, 2014,35(1): 96-100
CAI Xu-pu, LI Wan-cheng, GAO Fu-bin, JING Qiang, WU Guo-guang, ZHANG Bao-lin, DU Guo-tong. Influence of Indium Interlayer on The Crystal and Optical Properties of InN Grown on Silicon Substrate[J]. Chinese Journal of Luminescence, 2014,35(1): 96-100
蔡旭浦, 李万程, 高福斌, 景强, 吴国光, 张宝林, 杜国同. In插入层对硅衬底外延InN晶体质量和光学特性的影响[J]. 发光学报, 2014,35(1): 96-100 DOI: 10.3788/fgxb20143501.0096.
CAI Xu-pu, LI Wan-cheng, GAO Fu-bin, JING Qiang, WU Guo-guang, ZHANG Bao-lin, DU Guo-tong. Influence of Indium Interlayer on The Crystal and Optical Properties of InN Grown on Silicon Substrate[J]. Chinese Journal of Luminescence, 2014,35(1): 96-100 DOI: 10.3788/fgxb20143501.0096.
在Si(111)衬底上分别预沉积0,0.1,0.5,1 nm厚度的In插入层后,采用等离子辅助分子束外延法制备了纤锌矿结构的InN材料,结合X射线衍射(XRD)、扫描电子显微镜(SEM)、吸收谱及光致发光谱研究了不同厚度的In插入层对外延InN晶体质量和光学特性的影响。XRD和SEM的测试结果表明,在Si衬底上预沉积0.5 nm厚的In插入层有利于改善外延InN材料的形貌,提高材料的晶体质量。吸收谱和光致发光谱测试表明,0.5 nm厚In插入层对应的InN样品吸收边蓝移程度最小,光致发射谱半峰宽最窄,并且有最高的带边辐射复合发光效率。可见,引入适当厚度的InN插入层可以改善Si衬底上外延InN材料的晶体质量和光学特性。
Indium interlayers with thickness of 0
0.1
0.5
1 nm were deposited respectively before wurtzite InN was grown on silicon substrate by plasma-assisted molecular beam epitaxy (PA-MBE). X-ray diffraction (XRD) spectra
scanning electron microscope (SEM)
absorption and photoluminescence (PL) spectra were adopted to analyze the influence of indium interlayer on the crystal and optical properties of InN. XRD and SEM results indicate that indium interlayer with the thickness of 0.5 nm can improve the morphology of InN epitaxial with larger crystalline grains and have a better crystal quality. Absorption and PL spectra show that the sample with 0.5 nm indium interlayer exhibits the smallest blue-shift of absorption edge
the narrowest FWHM of PL spectra and the best near-band-edge radiative recombination efficiency. In conclusion
indium interlayer with appropriate thickness does have a positive influence on the crystal and optical properties of InN grown on silicon substrate.
OLeary S K, Foutz B E, Shur M S, et al. Electron transport in wurtzite indium nitride[J]. J. Appl. Phys., 1998, 83(2):826-829.[2] Bellotti E, Doshi B K, Brennan K F, et al. Ensemble Monte Carlo study of electron transport in wurtzite InN[J]. J. Appl. Phys., 1999, 85(2):916-923.[3] Foutz B E, OLeary S K, Shur M S, et al. Transient electron transport in wurtzite GaN, InN, and AlN[J]. J. Appl. Phys., 1999, 85(11):7727-7734.[4] Davydov V Y, Klochikhin A A, Emtsev V V, et al. Band gap of InN and In-rich InxGa1-xN alloys[J]. Phys. Stat. Sol. B, 2002, 230(2):4-6.[5] Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap of InN[J]. Appl. Phys. Lett., 2002, 80(21):3967-3969.[6] Matsuoka T, Okamoto H, Nakao M, et al. Optical bandgap energy of wurtzite InN[J]. Appl. Phys. Lett., 2002, 81(7):1246-1248.[7] Hori M, Kano K, Yamaguchi T, et al. Optical properties of InxGa1-xN with entire alloy composition on InN buffer layer grown by RF-MBE[J]. Phys. Stat. Sol. B, 2002, 234(3):750-754.[8] Davydov V Y, Klochikhin A A, Emtsev V V, et al. Band gap of hexagonal InN and InGaN alloys[J]. Phys. Stat. Sol. B, 2002, 234(3):787-795.[9] Yamamoto A, Tsujino M, Ohkubo M, et al. Nitridation effects of substrate surface on the metalorganic chemical vapor deposition growth of InN on Si and -Al2O3 substrates[J]. J. Cryst. Growth, 1994, 137(3-4):415-420.[10] Nanishi Y, Saito Y, Yamaguchi T, et al. Recent development of InN RF-MBE growth and its structural and property characterization[J]. Phys. Stat. Sol. C, 2004, 1(6):1487-1495.[11] Davydov V Y, Klochikhin A A, Seisyan R P, et al. Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap[J]. Phys. Stat. Sol. B, 2002, 229(3):1-3.[12] Hsiao C L, Tu L W, Chen M, et al. Polycrystalline to single-crystalline InN grown on Si(111) substrates by plasma-assisted molecular-beam epitaxy[J]. Jpn. J. Appl. Phys., 2005, 44(33-36):1076-1079.[13] Hsiao C L, Hsu H C, Chen L C, et al. Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors[J]. Appl. Phys. Lett., 2007, 91(18):181912-1-3.[14] Wu J, Walukiewicz W, Shan W, et al. Temperature dependence of the fundamental band gap of InN[J]. J. Appl. Phys., 2003, 94(7):4457-4460.[15] Wu G G, Du G T, Gao F B, et al. Near-infrared electroluminescence emission from an n-InN nanodots/p-Si heterojunction structure[J]. J. Phys. D: Appl. Phys., 2012, 45(21):215102-1-4.[16] Kumar M, Roul B, Bhat T N, et al. Kinetics of self-assembled InN quantum dots grown on Si(111) by plasma-assisted MBE[J]. J. Nanoparticle Res., 2011, 13(3):1281-1287.
0
浏览量
154
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构